Cytochrome P-450K of rat kidney cortex microsomes: Further studies on its interaction with fatty acids

1973 ◽  
Vol 158 (2) ◽  
pp. 597-604 ◽  
Author(s):  
Åke Ellin ◽  
Sten Orrenius ◽  
Åke Pilotti ◽  
Carl-Gunnar Swahn
2001 ◽  
Vol 12 (6) ◽  
pp. 1197-1203
Author(s):  
FATIMA DJOUADI ◽  
JEAN BASTIN

Abstract. The α isoform of peroxisome proliferator-activated receptor (PPARα), which is highly expressed in the kidney, can stimulate the expression of genes that are involved in fatty acid catabolism and therefore might be involved in the control of renal fatty acid β-oxidation. PPARα expression and its regulation in the immature kidney are not well documented. This study delineated the developmental pattern of PPARα expression in the rat kidney cortex and the medulla between postnatal days 10 and 30 and investigated the role of glucocorticoids in regulating PPARα expression. In the cortex, PPARα mRNA and protein increased 2- and 1.8-fold, respectively, from 10 to 21 d and then decreased 1.5- and 2.4-fold from 21 to 30 d. In the medulla, PPARα mRNA and protein increased continuously 3.3- and 2.4-fold, respectively. It is shown here that acute treatment by dexamethasone of 10-d-old rats precociously induced a 4- to 6-fold increase in PPARα mRNA and a 1.8-fold increase in protein within 6 h in each part of the kidney. Chronic injection of dexamethasone for 3 d also increased PPARα mRNA 3.8- and 2.2-fold in the cortex and the medulla, respectively, with a 1.5- and 2-fold increase in protein. Furthermore, adrenalectomy prevented the increases in PPARα mRNA and protein in both the cortex and the medulla between postnatal days 16 and 21, and these could be restored by dexamethasone treatment. Finally, with the use of an established renal cell line, it was shown that glucocorticoids stimulate gene expression of PPARα and of medium chain acyl-CoA dehydrogenase (MCAD, a PPARα target gene) 2- to 4-fold and 1.5-fold, respectively, and that addition of fatty acids in the culture media led to a 2.2-fold increase in MCAD mRNA. Altogether, these results demonstrated that glucocorticoids are potent regulators of PPARα development in the immature kidney and that these hormones act in concert with fatty acids to regulate MCAD gene expression in renal cells.


1994 ◽  
Vol 269 (9) ◽  
pp. 6637-6639
Author(s):  
A. Werner ◽  
S.A. Kempson ◽  
J. Biber ◽  
H. Murer

1978 ◽  
Vol 172 (1) ◽  
pp. 57-62 ◽  
Author(s):  
W Haase ◽  
A Schäfer ◽  
H Murer ◽  
R Kinne

Orientation of rat renal and intestinal brush-border membrane vesicles was studied with two independent methods: electron-microscopic freeze-fracture technique and immunological methods. With the freeze-fracture technique a distinct asymmetric distribution of particles on the two membrane fracture faces was demonstrated; this was used as a criterion for orientation of the isolated membrane vesicles. For the immunological approach the accessibility or inaccessibility of aminopeptidase M localized on the outer surface of the cell membrane to antibodies was used. With both methods we showed that the brush-border membrane vesicles isolated from rat kidney cortex and from rat small intestine for transport studies are predominantly orientated right-side out.


Author(s):  
Kodo Ito ◽  
Kenichi Yamada ◽  
Setsuko Yoshida ◽  
Keiji Hasunuma ◽  
Yasushi Tamura ◽  
...  

2003 ◽  
Vol 285 (3) ◽  
pp. C608-C617 ◽  
Author(s):  
Snezana Petrovic ◽  
Liyun Ma ◽  
Zhaohui Wang ◽  
Manoocher Soleimani

SLC26A6 (or putative anion transporter 1, PAT1) is located on the apical membrane of mouse kidney proximal tubule and mediates [Formula: see text] exchange in in vitro expression systems. We hypothesized that PAT1 along with a [Formula: see text] exchange is present in apical membranes of rat kidney proximal tubules. Northern hybridizations indicated the exclusive expression of SLC26A6 (PAT1 or CFEX) in rat kidney cortex, and immunocytochemical staining localized SLC26A6 on the apical membrane of proximal tubules, with complete prevention of the labeling with the preadsorbed serum. To examine the functional presence of apical [Formula: see text] exchanger, proximal tubules were isolated, microperfused, loaded with the pH-sensitive dye BCPCF-AM, and examined by digital ratiometric imaging. The pH of the perfusate and bath was kept at 7.4. Buffering capacity was measured, and transport rates were calculated as equivalent base flux. The results showed that in the presence of basolateral DIDS (to inhibit [Formula: see text] cotransporter 1) and apical EIPA (to inhibit Na+/H+ exchanger 3), the magnitude of cell acidification in response to addition of luminal Cl– was ∼5.0-fold higher in the presence than in the absence of [Formula: see text]. The Cl–-dependent base transport was inhibited by ∼61% in the presence of 0.5 mM luminal DIDS. The presence of physiological concentrations of oxalate in the lumen (200 μM) did not affect the [Formula: see text] exchange activity. These results are consistent with the presence of SLC26A6 (PAT1) and [Formula: see text] exchanger activity in the apical membrane of rat kidney proximal tubule. We propose that SLC26A6 is likely responsible for the apical [Formula: see text] (and Cl–/OH–) exchanger activities in kidney proximal tubule.


Sign in / Sign up

Export Citation Format

Share Document