The secondary structure of two recombinant human growth factors, platelet-derived growth factor and basic fibroblast growth factor, as determined by Fourier-transform infrared spectroscopy

1991 ◽  
Vol 285 (1) ◽  
pp. 111-115 ◽  
Author(s):  
Steven J. Prestrelski ◽  
Tsutomu Arakawa ◽  
William C. Kenney ◽  
D.Michael Byler
1994 ◽  
Vol 179 (3) ◽  
pp. 985-992 ◽  
Author(s):  
L R Benzaquen ◽  
A Nicholson-Weller ◽  
J A Halperin

Interactions between endothelium and vascular smooth muscle cells play a major role in the biology of the blood vessel wall. Growth factors released from endothelial cells control in part the normal and pathological proliferation of vascular smooth muscle cells. Endothelial deposits of C5b-9 proteins, the membrane attack complex of complement (MAC), have been found in a variety of pathological tissues in which cell proliferation is an early characteristic abnormality, including atherosclerosis. We have explored a possible bridging role for terminal complement C5b-9 proteins in eliciting focal signals for cell proliferation by releasing growth factors from endothelial cells. We found that both bovine aortic and human umbilical vein cells respond to the MAC by releasing basic fibroblast growth factor and platelet-derived growth factor. These mitogens stimulate DNA synthesis in Swiss 3T3, vascular smooth muscle, and glomerular mesangial cells. Based on these findings, we propose that complement-induced release of mitogens from endothelial cells is a novel pathogenic mechanism for proliferative disorders.


1994 ◽  
Vol 14 (9) ◽  
pp. 5748-5755
Author(s):  
K D Hanson ◽  
M Shichiri ◽  
M R Follansbee ◽  
J M Sedivy

We used targeted homologous recombination to disrupt one c-myc gene copy in a diploid fibroblast cell line and found that a twofold reduction in Myc expression resulted in lower exponential growth rates and a lengthening of the G0-to-S-phase transition (M. Shichiri, K. D. Hanson and J. M. Sedivy, Cell Growth Differ. 4:93-104, 1993). Myc is a transcription factor, and the number of target genes whose regulation could result in differential growth rates may be very large. We have approached this problem by examining effects of reduced c-myc expression in three broad areas: (i) secretion of growth factors, (ii) expression of growth factor receptors, and (iii) intracellular signal transduction between Myc and components of the intrinsic cell cycle clock. We have found no evidence that differential medium conditioning can account for the growth phenotypes. Likewise, the expression of receptors for platelet-derived growth factor, epidermal growth factor, basic fibroblast growth factor, and insulin-like growth factor I was the same in diploid and heterozygous cells (platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, and insulin-like growth factor are the sole growth factors required by these cells for growth in serum-free medium). In contrast, expression of cyclin E, cyclin A, and Rb phosphorylation were delayed when quiescent c-myc heterozygous cells were stimulated to enter the cell cycle. Expression of cyclin D1, cyclin D3, and Cdk2 was not affected. The timing of cyclin E induction was the earliest observable effect of reduced Myc expression. Our data indicate that Myc contributes to regulation of proliferation by a cell-autonomous mechanism that involves the modulation of cyclin E expression and, consequently, progression through the restriction point of the cell cycle.


1994 ◽  
Vol 14 (9) ◽  
pp. 5748-5755 ◽  
Author(s):  
K D Hanson ◽  
M Shichiri ◽  
M R Follansbee ◽  
J M Sedivy

We used targeted homologous recombination to disrupt one c-myc gene copy in a diploid fibroblast cell line and found that a twofold reduction in Myc expression resulted in lower exponential growth rates and a lengthening of the G0-to-S-phase transition (M. Shichiri, K. D. Hanson and J. M. Sedivy, Cell Growth Differ. 4:93-104, 1993). Myc is a transcription factor, and the number of target genes whose regulation could result in differential growth rates may be very large. We have approached this problem by examining effects of reduced c-myc expression in three broad areas: (i) secretion of growth factors, (ii) expression of growth factor receptors, and (iii) intracellular signal transduction between Myc and components of the intrinsic cell cycle clock. We have found no evidence that differential medium conditioning can account for the growth phenotypes. Likewise, the expression of receptors for platelet-derived growth factor, epidermal growth factor, basic fibroblast growth factor, and insulin-like growth factor I was the same in diploid and heterozygous cells (platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, and insulin-like growth factor are the sole growth factors required by these cells for growth in serum-free medium). In contrast, expression of cyclin E, cyclin A, and Rb phosphorylation were delayed when quiescent c-myc heterozygous cells were stimulated to enter the cell cycle. Expression of cyclin D1, cyclin D3, and Cdk2 was not affected. The timing of cyclin E induction was the earliest observable effect of reduced Myc expression. Our data indicate that Myc contributes to regulation of proliferation by a cell-autonomous mechanism that involves the modulation of cyclin E expression and, consequently, progression through the restriction point of the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document