A literature review of dry deposition of oxides of sulphur and nitrogen with emphasis on long-range transport modelling in North America

1986 ◽  
Vol 20 (11) ◽  
pp. 2101-2123 ◽  
Author(s):  
E.C. Voldner ◽  
L.A. Barrie ◽  
A. Sirois
2015 ◽  
Vol 15 (8) ◽  
pp. 11925-11983 ◽  
Author(s):  
X. W. Fu ◽  
H. Zhang ◽  
X. Wang ◽  
B. Yu ◽  
C.-J. Lin ◽  
...  

Abstract. China is presently the largest contributor of global anthropogenic Hg emission to the atmosphere. Over the past two decades, extensive studies have been conducted to characterize the concentration and speciation of atmospheric Hg in China. These studies provide important insight into the spatial and temporal distributions of atmospheric Hg species in China through ground-based measurements at a wide range of altitude over diverse geographical locations, and cruise and flight campaigns. In this critical review, we synthesize the available data to date to delineate the spatial and temporal patterns of atmospheric Hg, the long-range transport pattern of atmospheric Hg, and the impacts of Hg emissions on atmospheric Hg distribution and deposition in China. Atmospheric Hg species in China are substantially elevated compared to the background values in the Northern Hemisphere. The highly elevated Hg levels in Chinese urban areas were derived from local and regional anthropogenic and natural emissions, while long-range transport plays an important role in the atmospheric Hg concentration in remote areas. Preliminary studies suggested that atmosphere GEM levels are increasing at an urban and remote sites over the last decade, which were likely caused by the increasing anthropogenic emissions. The anthropogenic emission quantity in China estimated through the observed concentration ratios of GEM to CO (observed from 2001 to 2013) is approximately 983 t in 2009, ~ 3 folds of the published anthropogenic GEM emission inventories using activity data. Wet deposition fluxes of Hg in remote regions are low but the fluxes in Chinese urban areas are much higher than that in urban areas of North America and Europe. Dry deposition fluxes of Hg measured as litterfall input in forest areas of China were 2.5–9.0 times higher than the wet deposition fluxes and 1.8–13.6 times higher than the dry deposition fluxes of Hg in North America and Europe, suggesting that dry deposition to forest may be an important sink of atmospheric Hg in China.


2008 ◽  
Vol 8 (11) ◽  
pp. 2999-3014 ◽  
Author(s):  
A. van Donkelaar ◽  
R. V. Martin ◽  
W. R. Leaitch ◽  
A. M. Macdonald ◽  
T. W. Walker ◽  
...  

Abstract. We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April–May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant, contrary to expectations. Measured sulfate plumes in the free troposphere over British Columbia exceeded 2 μg/m3. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem) and use it to interpret the observations. Aerosol Optical Depth (AOD) retrieved from two satellite instruments (MISR and MODIS) for 2000–2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800–600 hPa), with a decrease in pressure toward land due to orographic effects. We calculate that 56% of the measured sulfate between 500–900 hPa over British Columbia is due to East Asian sources. We find evidence of a 72–85% increase in the relative contribution of East Asian sulfate to the total burden in spring off the northwest coast of the United States since 1985. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.31 μg/m3 (~30%) and account for 50% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by 0.32 μg/m3 per 10% increase in the simulated fraction of Asian sulfate, and suggest current East Asian emissions episodically degrade local air quality by more than 1.5 μg/m3.


2021 ◽  
Author(s):  
Ivana Tucaković ◽  
Sarah Mateša ◽  
Ivana Coha ◽  
Marija Marguš ◽  
Milan Čanković ◽  
...  

<p>Croatian Science Foundation MARRES project (MARine lake (Rogoznica) as a model for EcoSystem functioning in a changing environment) aims to investigate the unique environment (slow exchange of seawater with the sea; atmospheric input is the only source of freshwater) of the marine lake which is an example of highly stratified (permanent anoxia bellow 9 m depth), and by climate changes affected marine system in the middle of the eastern Adriatic coast (43.53° N, 15.95° E). The area of the lake is characterized by the extensive tourism and mariculture, and the low impact of local industrial activities. It is also affected by the combined influence of long-range transport of air masses and local emissions (open-fire events).</p><p>An important part of the project is focused on the exchange and interaction between atmosphere, water column and sediment by measuring the atmospheric input (wet and dry deposition) of sulphur compounds, organic carbon, trace metals and radionuclides (Be-7, Pb-210).</p><p>This work for the first time will present the current state of the measurements of radioactivity in the Rogoznica lake area, including samples of aerosol particulate matter, PM2.5 < 2.5 um, rainwater and lake water column. Namely, the concentrations of Be-7 and Pb-210 in PM2.5 are measured to determine and correlate the dynamics of particle transport, meteorological information, especially origin of air masses and seasonal variation of PM2.5. While presence of Be-7 indicates the recent wet or dry deposition from the upper parts of the atmosphere, Pb-210 may be used as a tracer for continental air masses. Therefore, it can also indicate the influence of the pollution induced by human activity. Regarding that, special attention will be paid to compare results before and during the Covid-19 lockdown periods.</p><p>So far, preliminary results do not show significant difference in PM2.5 masses and measured radionuclide activity concentrations for the lockdown period. Be-7 and Pb-210 were regularly detected in aerosols collected on a glass fiber filters during a one-week sampling periods with the air flow rate of 2.3 m<sup>3</sup>/h. Their activity concentrations are determined by gamma spectrometry using High Purity Germanium detectors. The results are found to be correlated with PM2.5 masses, ranging from 2.9 to 12.2 Bq/m<sup>3</sup> for Be-7 and from 0.5 to 2.5 Bq/m<sup>3</sup> for Pb-210. First analyses show that the highest values can be related to the long-range transport of air masses and to the recorded near open-fire event. As expected, Be-7 is also detected in almost every rainwater sample (event), with the activity concentration up to 5.6 Bq/L, while low activities of Pb-210 are detected only sporadically. Related to that, Be-7 is detected in lake water column as well, but only in the surface layer and in samples collected during, or immediately after the rain events. </p><p>Dynamics and seasonal variation of radionuclide activity concentrations in here studied samples will be discussed, and the relationships with some meteorological parameters (temperature, wind speed, relative humidity, precipitation level) as well as local and long-range transport and physico-chemical conditions in the lake water column will be established.</p>


2007 ◽  
Vol 46 (8) ◽  
pp. 1230-1251 ◽  
Author(s):  
George Kallos ◽  
Marina Astitha ◽  
Petros Katsafados ◽  
Chris Spyrou

Abstract During the past 20 years, organized experimental campaigns as well as continuous development and implementation of air-pollution modeling have led to significant gains in the understanding of the paths and scales of pollutant transport and transformation in the greater Mediterranean region (GMR). The work presented in this paper has two major objectives: 1) to summarize the existing knowledge on the transport paths of particulate matter (PM) in the GMR and 2) to illustrate some new findings related to the transport and transformation properties of PM in the GMR. Findings from previous studies indicate that anthropogenically produced air pollutants from European sources can be transported over long distances, reaching Africa, the Atlantic Ocean, and North America. The PM of natural origin, like Saharan dust, can be transported toward the Atlantic Ocean and North America mostly during the warm period of the year. Recent model simulations and studies in the area indicate that specific long-range transport patterns of aerosols, such as the transport from Asia and the Indian Ocean, central Africa, or America, have negligible or at best limited contribution to air-quality degradation in the GMR when compared with the other sources. Also, new findings from this work suggest that the imposed European Union limits on PM cannot be applicable for southern Europe unless the origin (natural or anthropogenic) of the PM is taken into account. The impacts of high PM levels in the GMR are not limited only to air quality, but also include serious implications for the water budget and the regional climate. These are issues that require extensive investigation because the processes involved are complex, and further model development is needed to include the relevant physicochemical processes properly.


2008 ◽  
Vol 8 (1) ◽  
pp. 4017-4057 ◽  
Author(s):  
A. van Donkelaar ◽  
R. V. Martin ◽  
W. R. Leaitch ◽  
A. M. Macdonald ◽  
T. W. Walker ◽  
...  

Abstract. We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April–May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant. Measured sulfate plumes in the free troposphere over British Columbia exceeded 1 μg/m3. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem) and use it to interpret the observations. Trends in Aerosol Optical Depth (AOD) retrieved from two satellite instruments (MISR and MODIS) for 2000–2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800–600 hPa), with a decrease in pressure toward land due to orographic effects. We calculate that 63% of the measured sulfate at 600 hPa over British Columbia is due to East Asian sources. Simulation of INTEX-B and May 1985 aircraft measurements off the northwest coast of the United States reveals a 2.4–3.4 fold increase in the relative contribution of East Asian sulfate to the total burden. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.14–0.19 μg/m3 (~30%) and account for 40% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by 0.27 μg/m3 per 10% increase in the simulated fraction of Asian sulfate, suggesting current East Asian emissions degrade local air quality.


2010 ◽  
Vol 10 (2) ◽  
pp. 4673-4717 ◽  
Author(s):  
D. Durnford ◽  
A. Dastoor ◽  
D. Figueras-Nieto ◽  
A. Ryjkov

Abstract. This study is the most extensive study to date on the transport of mercury to the Arctic. Moreover, it is the first such study to use a fully-coupled, online chemical transport model, Environment Canada's Global/Regional Atmospheric Heavy Metals model (GRAHM), where the meteorology and mercury processes are fully integrated. It is also the only study to date on the transport of mercury across Canada. We determined source attribution from Asia, North America, Russia and Europe at six arctic verification stations, as well as three subarctic and eight midlatitude Canadian stations. We have found that Asia, despite having transport efficiencies that were almost always lower than those of North America and often lower than those of Russia, was the dominant source of gaseous atmospheric mercury at all verification stations: it contributed the most mercury (29–37% at all stations, seasons and levels considered), its concentrations frequently explained nearly 100% of the variability in the concentrations produced by the simulation performed with full global emissions, particularly in the absence of local sources, and it generated the most long range transport (LRT) events, causing 43%, 67% and 75% of the events at the arctic, subarctic and midlatitude stations, respectively. For the Arctic, Russian transport efficiencies tended to be the strongest, as expected, while European and Asian efficiencies were lower and higher, respectively, than those found in the literature. This disagreement is likely produced by mercury's long lifetime relative to that of other pollutants. The accepted springtime preference for the trans-Pacific transport of Asian pollution was evident only in the midlatitude group of stations, being masked in the arctic and subarctic groups by the occurrence of atmospheric mercury depletion events. Some neighbouring arctic stations recorded dissimilar numbers of LRT events; despite their proximity, the behaviour of mercury at these stations was governed by different dynamics and transport pathways. The column burden of GEM in the lowest 5 km of the Northern Hemisphere was largest in summer from Asia, North America and Russia, but in winter from Europe. In the vertical, transport of mercury from all source regions occurred principally in the mid-troposphere.


Sign in / Sign up

Export Citation Format

Share Document