Influence of dicarboxylic phosphatidylcholines on the stability and phase transition of phosphatidylcholine liposomes

1981 ◽  
Vol 641 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Nicole Dousset ◽  
Jean-Claude Dousset ◽  
Louis Douste-Blazy
2021 ◽  
pp. 32-37
Author(s):  
Andrei A. Burdakin ◽  
Valerii R. Gavrilov ◽  
Ekaterina A. Us ◽  
Vitalii S. Bormashov

The problem of ensuring stability of Earth observation space-borne instruments undertaking long-term temperature measurements within thermal IR spectral range is described. For in-flight reliable control of the space-borne IR instruments characteristics the stability of onboard reference sources should be improved. The function of these high-stable sources will be executed by novel onboard blackbodies, incorporating the melt↔freeze phase transition phenomenon, currently being developed. As a part of these works the task of realizing an on-orbit calibration scale within the dynamic temperature range of Earth observation systems 210−350 K based on fixed-point phase transition temperatures of a number of potentially suitable substances is advanced. The corresponding series of the onboard reference blackbodies will be set up on the basis of the on-orbit calibration scale fixed points. It is shown that the achievement of the target lies in carrying out a number of in-flight experiments with the selected fixed points and the prospective onboard fixed-point blackbodies prototypes. The new In-Bi eutectic alloy melt temperature fixed point (~345 K) is proposed as the significant fixed points of the future on-orbit calibration scale. The results of the new fixed point preliminary laboratory studies have been analyzed. The results allowed to start preparation of the in-flight experiments investigating the In-Bi alloy for the purpose of its application in the novel onboard reference sources.


2013 ◽  
Vol 538 ◽  
pp. 121-124
Author(s):  
Jing Zhang

Yttria-stabilized zirconia (YSZ) is an important material in the area of energy and optical applications. In this study, the mechanical properties (Young’s modulus, Vickers hardness, flexural strength, and coefficient thermal expansion) and physical properties (phase transition) of yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) was reported. The effect of thermal cycling on the mechanical properties and the stability was also evaluated.


2008 ◽  
Vol 17 (09) ◽  
pp. 1965-1978 ◽  
Author(s):  
YU-XIN LIU ◽  
HUAN CHEN ◽  
LEI CHANG ◽  
YUE ZHAO ◽  
WEI YUAN

We describe briefly the effects of the running coupling strength, the current quark mass, the temperature and density on the QCD phase structure and its transition in the framework of Dyson-Schwinger equation approach of QCD. With a simple model, we show that the chiral susceptibility can identify the stability of the vacuum and plays an important role in describing the QCD Phase transition.


1994 ◽  
Vol 58 (391) ◽  
pp. 185-199 ◽  
Author(s):  
P. F. Schofield ◽  
J. M. Charnock ◽  
G. Cressey ◽  
C. M. B. Henderson

AbstractEXAFS spectroscopy has been used to monitor changes in divalent cation site geometries across the P2/c-P1̄ phase transition in the sanmartinite (ZnWO4)-cuproscheelite (CuWO4) solid solution at ambient and liquid nitrogen temperatures. In the ZnWO4 end member, Zn occupies axially-compressed ZnO6 octahedra with two axial Zn-O bonds at approximately 1.95 Å and four square planar Zn-O bonds at approximately 2.11 Å. The substitution of Zn by Cu generates a second Zn environment with four short square planar Zn-O bonds and two longer axial Zn-O bonds. The proportion of the latter site increases progressively as the Cu content increases. Cu EXAFS reveals that the CuO6 octahedra maintain their Jahn-Teller axially-elongate geometry throughout the majority of the solid solution and only occur as axially-compressed octahedra well within the stability field of the Zn-rich phase with monoclinic long-range order.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750138 ◽  
Author(s):  
Kh. Jafarzade ◽  
J. Sadeghi

In this paper, we take cosmological constant as a thermodynamical pressure and its conjugate quantity as a thermodynamical volume. This expression helps us to investigate the phase transition and holographic heat engine. So, in order to have Van der Waals fluid behavior in Horava–Lifshitz (HL) black hole, we modified the solution of such black hole with some cosmology ansatz. Also from holographic heat engine, we obtain Carnot efficiency for the HL black hole. The phase transition of the system lead us to investigate the stability condition for the corresponding black hole. In that case, we show that the stability exist only in special region of black hole.


Author(s):  
Daniel Becker ◽  
Horst P. Beck

AbstractIn this work, we present a theoretical study (based on DFT-calculations) in a wide pressure range of the structural and electronic properties and the stability of compounds crystallising in a TlI- or CrB-type structure. Both structure types have the characteristic structural feature of zigzag chains with unusual short homonuclear distances. The main focus of this study is to elucidate the nature of bonding within these zigzag chains at ambient and elevated pressure. For this purpose we discuss the evolution of the distances within the zigzag chains with pressure, the transition pressure of the phase transition to a CsCl-type arrangement (high-pressure phase) and compressibilities of the low- and high-pressure phases. For a better understanding of the structure and bonding, the band structures of these compounds are evaluated. The calculations are complemented by an orbital analysis using the crystal orbital Hamilton population (COHP) and an analysis of the electronic density topology with the electron localisation function (ELF). Our study indicates that there is a bonding electron pair in compounds crystallising in the CrB-type structure and that the nature of the electron pair does not change significantly at elevated pressure up to the phase transition. However, the “character” of the additional electron pair in the In-monohalides (TlI-type structure) changes with increasing pressure from nonbonding to bonding. The phase transition to a CsCl- type structure implies a fundamental change to nonbonding stereochemically inert electron pairs for all compounds.


2003 ◽  
Vol 792 ◽  
Author(s):  
D Simeone ◽  
G Baldinozzi ◽  
D. Gosset ◽  
M. Dutheil

ABSTRACTZirconia, oxidation product of Zircaloy cladding elements of nuclear plants, exhibits an unusual behaviour under irradiation. Impinging ions and neutrons induce a monoclinic to tetragonal phase transition at room temperature in this solid. To understand this modification of the positions of the stability lines in such a solid under irradiation, we have studied the monoclinic to tetragonal first order phase transition versus temperature in pure micrometric and nanometric zirconia samples. From these works, it was possible to understand the behaviour of this material under irradiation pointing out the key role of defects induced irradiation on its phase diagram.


2006 ◽  
Vol 941 ◽  
Author(s):  
Ivan Rungger ◽  
Stefano Sanvito

ABSTRACTThe magnetic and structural properties of MnAs are investigated by mapping ab initio total energies onto a Heisenberg Hamiltonian. We study the dependence of the Curie temperature over the unit cell volume and an orthorhombic distortion by using the mean field approximation, and find that for orthorhombically distorted cells the Curie temperature is much smaller than for hexagonal cells. We provide an explanation for the structural changes of both the first order phase transition at 318 K and the second order phase transition at 400 K, with the cell volume driving the stability of the different structures in the paramagnetic state. The stable cell is found to be orthorhombic up to a critical lattice constant of about 3.7 Å, above which it remains hexagonal.


Sign in / Sign up

Export Citation Format

Share Document