The primary structure of the tetrahaem cytochrome from Desulfovibrio desulfuricans (strain norway 4). Description of a new class of low-potential cytochrome

1981 ◽  
Vol 671 (2) ◽  
pp. 219-226 ◽  
Author(s):  
Mireille Bruschi
FEBS Letters ◽  
1996 ◽  
Vol 385 (3) ◽  
pp. 138-142 ◽  
Author(s):  
Bart Devreese ◽  
Pedro Tavares ◽  
Jorge Lampreia ◽  
Nancy Van Damme ◽  
Jean Le Gall ◽  
...  

1991 ◽  
Vol 274 (2) ◽  
pp. 409-414 ◽  
Author(s):  
D J Meyer ◽  
B Coles ◽  
S E Pemble ◽  
K S Gilmore ◽  
G M Fraser ◽  
...  

Glutathione transferases (GSTs) of a novel class, which it is proposed to term Theta, were purified from rat and human liver. Two, named GST 5-5 and GST 12-12, were obtained from the rat, and one, named GST theta, was from the human. Unlike other mammalian GSTs they lack activity towards 1-chloro-2,4-dinitrobenzene and are not retained by GSH affinity matrices. Only GST 5-5 retains full activity during purification, and its activities towards the substrates 1,2-epoxy-3-(p-nitrophenoxy)propane, p-nitrobenzyl chloride, p-nitrophenethyl bromide, cumene hydroperoxide, dichloromethane and DNA hydroperoxide are 185, 86, 67, 42, 11 and 0.03 mumol/min per mg of protein respectively. Earlier preparations of GST 5-5 or GST E were probably a mixture of GST 5-5 and GST 12-12, which was largely inactive, and may also have been contaminated by less than 1% with another GSH peroxidase of far greater activity. Partial analysis of primary structure shows that subunits 5, 12 and theta are related to each other, particularly at the N-terminus, where 25 of 27 residues are identical, but have little relationship to the Alpha, Mu and Pi classes of mammalian GSTs. They do, however, show some relatedness to subunit I of Drosophila melanogaster [Toung, Hsieh & Tu (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 31-35] and the dichloromethane dehalogenase of Methylobacterium DM4 [La Roche & Leisinger (1990) J. Bacteriol, 172, 164-171].


FEBS Letters ◽  
1988 ◽  
Vol 231 (2) ◽  
pp. 336-340 ◽  
Author(s):  
Nicholas Morrice ◽  
Philip Geary ◽  
Richard Cammack ◽  
Alan Harris ◽  
Fatima Beg ◽  
...  

1997 ◽  
Vol 248 (2) ◽  
pp. 445-451 ◽  
Author(s):  
Bart Devreese ◽  
Cristina Costa ◽  
Hans Demol ◽  
Vasilios Papaefthymiou ◽  
Isabelle Moura ◽  
...  

Biochimie ◽  
1983 ◽  
Vol 65 (1) ◽  
pp. 43-47 ◽  
Author(s):  
F. Guerlesquin ◽  
M. Bruschi ◽  
G. Bovier-Lapierre ◽  
J. Bonicel ◽  
P. Couchoud

Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Author(s):  
G. C. Ruben ◽  
K. Iqbal ◽  
I. Grundke-Iqbal ◽  
H. Wisniewski ◽  
T. L. Ciardelli ◽  
...  

In neurons, the microtubule associated protein, tau, is found in the axons. Tau stabilizes the microtubules required for neurotransmitter transport to the axonal terminal. Since tau has been found in both Alzheimer neurofibrillary tangles (NFT) and in paired helical filaments (PHF), the study of tau's normal structure had to preceed TEM studies of NFT and PHF. The structure of tau was first studied by ultracentrifugation. This work suggested that it was a rod shaped molecule with an axial ratio of 20:1. More recently, paraciystals of phosphorylated and nonphosphoiylated tau have been reported. Phosphorylated tau was 90-95 nm in length and 3-6 nm in diameter where as nonphosphorylated tau was 69-75 nm in length. A shorter length of 30 nm was reported for undamaged tau indicating that it is an extremely flexible molecule. Tau was also studied in relation to microtubules, and its length was found to be 56.1±14.1 nm.


Author(s):  
T. F. Kelly ◽  
P. J. Lee ◽  
E. E. Hellstrom ◽  
D. C. Larbalestier

Recently there has been much excitement over a new class of high Tc (>30 K) ceramic superconductors of the form A1-xBxCuO4-x, where A is a rare earth and B is from Group II. Unfortunately these materials have only been able to support small transport current densities 1-10 A/cm2. It is very desirable to increase these values by 2 to 3 orders of magnitude for useful high field applications. The reason for these small transport currents is as yet unknown. Evidence has, however, been presented for superconducting clusters on a 50-100 nm scale and on a 1-3 μm scale. We therefore planned a detailed TEM and STEM microanalysis study in order to see whether any evidence for the clusters could be seen.A La1.8Sr0.2Cu04 pellet was cut into 1 mm thick slices from which 3 mm discs were cut. The discs were subsequently mechanically ground to 100 μm total thickness and dimpled to 20 μm thickness at the center.


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


Sign in / Sign up

Export Citation Format

Share Document