Conformational change of DNA binding subunit of RNA polymerase II on binding to DNA

1985 ◽  
Vol 129 (1) ◽  
pp. 141-147 ◽  
Author(s):  
Masami Horikoshi ◽  
Kazuhisa Sekimizu ◽  
Shunji Natori
1983 ◽  
Vol 94 (6) ◽  
pp. 1761-1767 ◽  
Author(s):  
Masami HORIKOSHI ◽  
Hiro-omi TAMURA ◽  
Kazuhisa SEKIMIZU ◽  
Masuo OBINATA ◽  
Shunji NATORI

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shu-Hao Liou ◽  
Sameer K. Singh ◽  
Robert H. Singer ◽  
Robert A. Coleman ◽  
Wei-Li Liu

AbstractThe tumor suppressor p53 protein activates expression of a vast gene network in response to stress stimuli for cellular integrity. The molecular mechanism underlying how p53 targets RNA polymerase II (Pol II) to regulate transcription remains unclear. To elucidate the p53/Pol II interaction, we have determined a 4.6 Å resolution structure of the human p53/Pol II assembly via single particle cryo-electron microscopy. Our structure reveals that p53’s DNA binding domain targets the upstream DNA binding site within Pol II. This association introduces conformational changes of the Pol II clamp into a further-closed state. A cavity was identified between p53 and Pol II that could possibly host DNA. The transactivation domain of p53 binds the surface of Pol II’s jaw that contacts downstream DNA. These findings suggest that p53’s functional domains directly regulate DNA binding activity of Pol II to mediate transcription, thereby providing insights into p53-regulated gene expression.


Genetics ◽  
1988 ◽  
Vol 120 (2) ◽  
pp. 423-434
Author(s):  
A M Bullerjahn ◽  
D L Riddle

Abstract A fine-structure genetic map has been constructed for ama-1 IV, an essential gene in Caenorhabditis elegans encoding the amanitin-binding subunit of RNA polymerase II. Sixteen EMS-induced recessive-lethal mutations have been positioned in the gene by determining their intragenic recombination frequencies with m118, a mutation that confers dominant resistance to alpha-amanitin. The 16 mutants, all isolated in the ama-1(m118) background, include 13 that are early larval lethals, and three that are mid-larval lethals, at 25 degrees. Six of the mutants exhibit temperature-dependence in the severity of their phenotype. Intragenic recombination between the lethal site and the parental resistance mutation was detected by means of resistance to amanitin. Recombinants were detected at frequencies as low as 2 X 10(-6). The segregation of the closely linked flanking markers, unc-17 and unc-5, revealed whether the lethal mutation was to the left or the right of m118. By adding the distances between the extreme left and right mutations, the ama-1 gene is estimated to be 0.011 map unit long, with m118 positioned 0.004 map unit from the left-most lethal mutation. To order the lethal mutations with respect to each other, viable heteroallelic strains were constructed using the free duplication, mDp1[unc-17(e113) dpy-13(+) ama-1(+)]. The heteroallelic strains were sensitive to amanitin, and recombination events between the lethal mutations were specifically selected by means of the dominant amanitin resistance encoded on the recombinant chromosome. The segregation of outside markers revealed the left-right order of the lethal mutations. The position of mutations within the gene is nonrandom. Functional domains of the ama-1 gene indicated by the various lethal phenotypes are discussed.


1998 ◽  
Vol 95 (22) ◽  
pp. 12890-12895 ◽  
Author(s):  
L. A. Dickinson ◽  
R. J. Gulizia ◽  
J. W. Trauger ◽  
E. E. Baird ◽  
D. E. Mosier ◽  
...  

1988 ◽  
Vol 253 (1) ◽  
pp. 281-285 ◽  
Author(s):  
C Job ◽  
L De Mercoyrol ◽  
D Job

Progress curves of U-A-primed RNA synthesis catalysed by wheat-germ RNA polymerase II on a poly[d(A-T)] template exhibit a slow burst of activity. In contrast, the progress curves of single-step addition of UMP to U-A primer in the abortive elongation reaction do not exhibit the slow burst of activity. The correlation between the kinetic transient in the productive pathway of RNA synthesis and the rate of abortive elongation is suggestive of the occurrence of a slow conformational change of the transcription complex during the transition from abortive to productive elongation. The exceptional duration of the transient burst (in the region of 4 min) may suggest a transition of a hysteretic type.


2007 ◽  
Vol 27 (6) ◽  
pp. 2059-2073 ◽  
Author(s):  
Victoria H. Cowling ◽  
Michael D. Cole

ABSTRACT Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc −/− fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters and stimulates TFIIH binding in an MBII-dependent manner. Expression of the Myc transactivation domain increases CDK mRNA cap methylation, polysome loading, and the rate of translation. We find that some traditional Myc transcriptional target genes are also regulated by this Myc-driven translation mechanism. We propose that Myc transactivation domain-driven RNA Pol II CTD phosphorylation has broad effects on both transcription and mRNA metabolism.


Sign in / Sign up

Export Citation Format

Share Document