The determination of human serum albumin by its specific binding ofthe anionicdye, 2-(4′-hydroxybenzeneazo)-benzoic acid

1965 ◽  
Vol 12 (5) ◽  
pp. 532-541 ◽  
Author(s):  
A.T. Ness ◽  
H.C. Dickerson ◽  
J.V. Pastewka
Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3321
Author(s):  
Katarzyna Kurpet ◽  
Rafał Głowacki ◽  
Grażyna Chwatko

Biothiols are extremely powerful antioxidants that protect cells against the effects of oxidative stress. They are also considered relevant disease biomarkers, specifically risk factors for cardiovascular disease. In this paper, a new procedure for the simultaneous determination of human serum albumin and low-molecular-weight thiols in plasma is described. The method is based on the pre-column derivatization of analytes with a thiol-specific fluorescence labeling reagent, monobromobimane, followed by separation and quantification through reversed-phase high-performance liquid chromatography with fluorescence detection (excitation, 378 nm; emission, 492 nm). Prior to the derivatization step, the oxidized thiols are converted to their reduced forms by reductive cleavage with sodium borohydride. Linearity in the detector response for total thiols was observed in the following ranges: 1.76–30.0 mg mL−1 for human serum albumin, 0.29–5.0 nmol mL−1 for α-lipoic acid, 1.16–35 nmol mL−1 for glutathione, 9.83–450.0 nmol mL−1 for cysteine, 0.55–40.0 nmol mL−1 for homocysteine, 0.34–50.0 nmol mL−1 for N-acetyl-L-cysteine, and 1.45–45.0 nmol mL−1 for cysteinylglycine. Recovery values of 85.16–119.48% were recorded for all the analytes. The developed method is sensitive, repeatable, and linear within the expected ranges of total thiols. The devised procedure can be applied to plasma samples to monitor biochemical processes in various pathophysiological states.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5286
Author(s):  
Xing Guo ◽  
Rong Liu ◽  
Hongmei Li ◽  
Jingzhe Wang ◽  
Zhongyun Yuan ◽  
...  

For the first time, a novel NiFe2O4/paper-based magnetoelastic (ME) biosensor was developed for rapid, sensitive, and portable detection of human serum albumin (HSA). Due to the uniquely magnetoelastic effect of NiFe2O4 nanoparticles and the excellent mechanical properties of the paper, the paper-based ME biosensor transforms the surface stress signal induced by the specific binding of HSA and antibody modified on the paper into the electromagnetic signal. The accumulated binding complex generates a compressive stress on the biosensor surface, resulting in a decrease in the biosensor’s static magnetic permeability, which correlates to the HSA concentrations. To improve the sensitivity of the biosensor, the concentration of NiFe2O4 nanofluid and the impregnated numbers of the NiFe2O4 nanofluid-impregnated papers were optimized. The experimental results demonstrated that the biosensor exhibited a linear response to HSA concentrations ranging from 10 μg∙mL−1 to 200 μg∙mL−1, with a detection limit of 0.43 μg∙mL−1, which is significantly lower than the minimal diagnosis limit of microalbuminuria. The NiFe2O4/paper-based ME biosensor is easy to fabricate, and allows the rapid, highly-sensitive, and selective detection of HSA, providing a valuable analytical device for early monitoring and clinical diagnosis of microalbuminuria and nephropathy. This study shows the successful integration of the paper-based biosensor and the ME sensing analytical method will be a highly-sensitive, easy-to-use, disposable, and portable alternative for point-of-care monitoring.


Sign in / Sign up

Export Citation Format

Share Document