Micromechanics prediction of the shear strength of carbon fibre/epoxy matrix composites: the influence of the matrix and interface strengths

Composites ◽  
1992 ◽  
Vol 23 (6) ◽  
pp. 463
2019 ◽  
Vol 229 ◽  
pp. 111431 ◽  
Author(s):  
Jiawei Yao ◽  
Kangmin Niu ◽  
Yifan Niu ◽  
Teng Zhang

1996 ◽  
Vol 56 (1-4) ◽  
pp. 292-301 ◽  
Author(s):  
M. Buggy ◽  
T. Temimhan ◽  
O. Braddell

2017 ◽  
Vol 742 ◽  
pp. 473-481 ◽  
Author(s):  
Thomas Köhler ◽  
Tim Röding ◽  
Thomas Gries ◽  
Gunnar Seide

Carbon fibre reinforced plastics (CFRPs) can be classified according to whether the matrix is a thermoset or a thermoplastic. Thermoset-matrix composites are by tradition far more common, but thermoplastic-matrix composites are gaining in importance. There are several techniques for combining carbon fibres with a thermoplastic-matrix system. The composite’s characteristics as well as its manufacturing costs are dependent on the impregnation technique of the carbon fibre and the textile structure respectively. Carbon fibre reinforced thermoplastics (CFRTPs) are suitable for fast and economic production of high-performance components. Despite the higher material costs thermoplastic-matrix systems show cost benefits in comparison to thermoset-matrix due to substantial time savings in the production process. Moreover CFRTPs can be manufactured in large production runs. The commingling of reinforcement fibres with matrix fibres is a well-established process. Another approach is the coating of the carbon fibre with a thermoplastic subsequent to the carbon fibre production (carbonization, activation and deposition of sizing). The latter point is currently subject of research and is a promising method for further increasing the production speed. This paper presents the different possibilities of impregnating carbon fibres with a thermoplastic matrix. Diverse technologies along the process chain of the CFRTP production will be discussed.


1995 ◽  
Vol 30 (13) ◽  
pp. 3543-3546 ◽  
Author(s):  
G. Bogoeva-Gaceva ◽  
D. Burevski ◽  
A. Dekanski ◽  
A. Janevski

The mechanical properties and water absorption behavior of a pure glass fiber reinforced epoxy matrix and a glass fiber reinforced epoxy filled composites immersed into a tap water were investigated. The main purpose of this experiment is addition of two different powdered fillers (CaCO3 and MoS2 ) into the epoxy matrix and comparing the properties of pure GFRP and filled GFRP. The composites specimens with fillers absorb less water when compared to pure GFRP specimens at room temperature. Water absorption curves and equilibrium moisture content were determined. The composites exhibit a positive deviation from the Fickan’s law with the addition of fillers into the matrix. The influence of water uptake has significant effect on the reduction of mechanical properties. It is observed that 3% filled MoS2 in epoxy matrix has less uptake of water and the tensile strength decreased is 3% , flexural strength decreased up to 18% and shear strength is 42% decreased when compared to CaCO3 filled composites and unfilled glass fiber reinforced polymer composite.


2019 ◽  
Vol 41 (4) ◽  
pp. 655-655
Author(s):  
Muhammad Abdul Basit Muhammad Abdul Basit ◽  
Sybt e anwar Qais Sybt e anwar Qais ◽  
Muhammad Saffee Ullah Malik and Ghufran Ur Rehman Muhammad Saffee Ullah Malik and Ghufran Ur Rehman ◽  
Faizan Siddique Awan Faizan Siddique Awan ◽  
Laraib Alam Khan and Tayyab Subhani Laraib Alam Khan and Tayyab Subhani

Carbon fiber reinforced polymeric matrix composites are enormously used in aerospace and automotive industries due to their enhanced specific properties. However, the area of interlaminar shear properties still needs investigation so as to produce composites with improved through-the-thickness properties. To improve interlaminar shear properties of these composites, acid-functionalized multiwalled carbon nanotubes were deposited on de-sized carbon fibers through electrophoretic deposition. De-sizing of carbon fabric was performed through three different methods: furnace heating, acidic treatment and chloroform usage. As the acid-treatment provided better results than other two techniques, the acid-de-sized carbon fibers were coated with nanotubes and subsequently incorporated in epoxy matrix to prepare a novel class of multiscale composites using vacuum assisted resin transfer molding technique. Nearly 30% rise in the interlaminar shear strength of the composites was obtained which was credited to the coating of nanotubes on the surface of carbon fibers. The increased adhesion between carbon fibers and epoxy matrix due to mechanical interlocking of nanotubes was found to be the possible reason of improved interlaminar shear properties.


1994 ◽  
Vol 365 ◽  
Author(s):  
Paula J. Gaeta ◽  
Richard D. Sisson ◽  
M. Singh ◽  
Jeffrey I. Eldridge

ABSTRACTThe possibility of improving the interfacial shear strength of the SiC fiber reinforced SiC matrix composite system was examined. A ceramic fiber coating was chosen based on availability and chemical stability with the fiber and matrix. Fiber push-out tests conducted on as-received and coated fiber reinforced composite samples allowed characterization of the interfacial shear strength. Average debond shear and frictional sliding stresses were calculated. The effects of sample thickness and second phase addition in the matrix were also evaluated. Tested samples were examined by SEM to determine the location of the interfacial failure and to determine if any interface reactions had occurred. The coating was then evaluated based on the resulting interfacial shear strength, failure location, and integrity of the interface as compared to those properties of samples reinforced with as-received fibers.


Sign in / Sign up

Export Citation Format

Share Document