Characterization of antisera against mouse teratocarcinoma OTT6050: Molecular species recognized on embryoid bodies, preimplantation embryos, and sperm

1980 ◽  
Vol 76 (1) ◽  
pp. 203-214 ◽  
Author(s):  
Cynthia G. Webb
1992 ◽  
Vol 26 (2-3) ◽  
pp. 155-162 ◽  
Author(s):  
Makoto Kobayashi ◽  
Tsuneo Asano ◽  
Kazunobu Ohfune ◽  
Koichi Kato

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 203 ◽  
Author(s):  
Blanca Simon ◽  
David Bolumar ◽  
Alicia Amadoz ◽  
Jorge Jimenez-Almazán ◽  
Diana Valbuena ◽  
...  

Extracellular vesicles (EVs) are known to transport DNA, but their implications in embryonic implantation are unknown. The aim of this study was to investigate EVs production and secretion by preimplantation embryos and assess their DNA cargo. Murine oocytes and embryos were obtained from six- to eight-week-old females, cultured until E4.5 and analyzed using transmission electron microscopy to examine EVs production. EVs were isolated from E4.5-day conditioned media and quantified by nanoparticle tracking analysis, characterized by immunogold, and their DNA cargo sequenced. Multivesicular bodies were observed in murine oocytes and preimplantation embryos together with the secretion of EVs to the blastocoel cavity and blastocyst spent medium. Embryo-derived EVs showed variable electron-densities and sizes (20–500 nm) and total concentrations of 1.74 × 107 ± 2.60 × 106 particles/mL. Embryo secreted EVs were positive for CD63 and ARF6. DNA cargo sequencing demonstrated no differences in DNA between apoptotic bodies or smaller EVs, although they showed significant gene enrichment compared to control medium. The analysis of sequences uniquely mapping the murine genome revealed that DNA contained in EVs showed higher representation of embryo genome than vesicle-free DNA. Murine blastocysts secrete EVs containing genome-wide sequences of DNA to the medium, reinforcing the relevance of studying these vesicles and their cargo in the preimplantation moment, where secreted DNA may help the assessment of the embryo previous to implantation.


Microbiology ◽  
2005 ◽  
Vol 151 (10) ◽  
pp. 3403-3416 ◽  
Author(s):  
Yukiko Fujita ◽  
Takashi Naka ◽  
Michael R. McNeil ◽  
Ikuya Yano

Cord factor (trehalose 6,6′-dimycolate, TDM) is an unique glycolipid with a trehalose and two molecules of mycolic acids in the mycobacterial cell envelope. Since TDM consists of two molecules of very long branched-chain 3-hydroxy fatty acids, the molecular mass ranges widely and in a complex manner. To characterize the molecular structure of TDM precisely and simply, an attempt was made to determine the mycolic acid subclasses of TDM and the molecular species composition of intact TDM by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for the first time. The results showed that less than 1 μg mycolic acid methyl ester of TDM from nine representative species of mycobacteria and TDM from the same species was sufficient to obtain well-resolved mass spectra composed of pseudomolecular ions [M+Na]+. Although the mass ion distribution was extremely diverse, the molecular species of each TDM was identified clearly by constructing a molecular ion matrix consisting of the combination of two molecules of mycolic acids. The results showed a marked difference in the molecular structure of TDM among mycobacterial species and subspecies. TDM from Mycobacterium tuberculosis (H37Rv and Aoyama B) showed a distinctive mass pattern and consisted of over 60 molecular ions with α-, methoxy- and ketomycolate. TDM from Mycobacterium bovis BCG Tokyo 172 similarly showed over 35 molecular ions, but that from M. bovis BCG Connaught showed simpler molecular ion clusters consisting of less than 35 molecular species due to a complete lack of methoxymycolate. Mass ions due to TDM from M. bovis BCG Connaught and Mycobacterium kansasii showed a biphasic distribution, but the two major peaks of TDM from M. kansasii were shifted up two or three carbon units higher compared with M. bovis BCG Connaught. Within the rapid grower group, in TDM consisting of α-, keto- and wax ester mycolate from Mycobacterium phlei and Mycobacterium flavescens, the mass ion distribution due to polar mycolates was shifted lower than that from the Mycobacterium avium–intracellulare group. Since the physico-chemical properties and antigenic structure of mycolic acid of TDM affect the host immune responses profoundly, the molecular characterization of TDM by MALDI-TOF mass analysis may give very useful information on the relationship of glycolipid structure to its biological activity.


2007 ◽  
Vol 102 (4) ◽  
pp. 1187-1191 ◽  
Author(s):  
Shen Xuan Ri ◽  
Kurihara Hideyuki ◽  
Takahashi Koretaro
Keyword(s):  

1980 ◽  
Vol 27 (4) ◽  
pp. 289-304 ◽  
Author(s):  
N. Salem ◽  
P. Serpentino ◽  
J.S. Puskin ◽  
L.G. Abood

1997 ◽  
Vol 273 (4) ◽  
pp. C1109-C1123 ◽  
Author(s):  
Wolfgang Mueller-Klieser

This article reviews actual advances in the development and application of three-dimensional (3-D) cell culture systems. Recent therapeutically oriented studies include characterization of multicellular-mediated drug resistance, novel ways of quantifying hypoxia, and new approaches to more efficient immunotherapy. Recent progress toward understanding the development of necrosis in tumor spheroids has been made using novel spheroid models. 3-D cultures have been used for studies on molecular mechanisms involved in invasion and metastasis, with a major focus on the role of E-cadherin. Similarly, tumor angiogenesis and the significance of vascular endothelial growth factor have been investigated in a variety of 3-D culture systems. There are many ongoing developments in tissue modeling or remodeling that promise significant progress toward the development of bioartificial liver support and artificial blood. Perhaps one of the most interesting areas of basic research with 3-D cultures is the characterization of embryoid bodies obtained from stable embryonic stem cells. These models have greatly increased the understanding of embryonic development, in particular through the notable exceptional advances in cardiogenesis.


Sign in / Sign up

Export Citation Format

Share Document