The zfh-2 gene product is a potential regulator of neuron-specific DOPA decarboxylase gene expression in Drosophila

1992 ◽  
Vol 154 (1) ◽  
pp. 84-94 ◽  
Author(s):  
Martha J. Lundell ◽  
Jay Hirsh
2017 ◽  
Vol 47 (12) ◽  
Author(s):  
Mariana Batista Rodrigues Faleiro ◽  
Lorena Cardoso Cintra ◽  
Rosália Santos Amorim Jesuino ◽  
Eugênio Gonçalves de Araújo ◽  
Rafael Malagoli Rocha ◽  
...  

ABSTRACT: Gene expression of ErbB1 and ErbB2, and immunostaining of EGFR (Her1) and Her2 (c-erbB-2) were evaluated in this study to ascertain whether these receptors are involved in the evolution of canine premalignant and malignant prostatic lesions, as proliferative inflammatory atrophy (PIA) and prostatic carcinoma (PC). With regards to the intensity of EGFR immunostaining, there was no difference between normal prostatic tissue and tissues with PIA or PC. In relation to Her2 immunostaining, there were differences between normal prostatic tissue and those with PIA and PC, as also differences between prostates with PIA and PC. There was no correlation between EGFR and Her2 immunostaining. ErbB1 gene product was detected in two normal tissue samples, in one with PIA, and in all samples with PC. ErbB2 mRNA was recorded in two canine samples with PIA, in all with PC, but was not detected in normal prostatic tissue. It was concluded that EGFR and Her2 play roles in canine PIA and PC, suggesting that those receptors may be involved in canine prostatic carcinogenesis.


1998 ◽  
Vol 72 (1) ◽  
pp. 857-861 ◽  
Author(s):  
Adrian Whitehouse ◽  
Matthew Cooper ◽  
David M. Meredith

ABSTRACT The herpesvirus saimiri (HVS) immediate-early gene product encoded by open reading frame (ORF) 57 shares limited amino acid homology with HSV-1 ICP27 and Epstein-Barr virus BMLF1, both regulatory proteins. The ORF 57 gene has been proposed to be spliced based on the genome sequence, and here we confirm the intron-exon structure of the gene. We also demonstrate that a cDNA construct of the ORF 57 gene product represses the transactivating capability of the ORF 50a gene product (which is produced from a spliced transcript), but activates that of ORF 50b (an unspliced transcript). Further analyses with cotransfection experiments show that ORF 57 can either activate or repress expression from a range of both early and late HVS promoters, depending on the target gene. These results indicate that repression of gene expression mediated by the ORF 57 gene product is dependent on the presence of an intron within the target gene encoding region. Furthermore, Northern blot analysis demonstrates that the levels of mRNA transcribed from genes not containing an intron are not significantly affected in the presence of the ORF 57 gene product. This suggests that it regulates gene expression through a posttranscriptional mechanism.


Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1763-1770 ◽  
Author(s):  
Ryszard Zielke ◽  
Aleksandra Sikora ◽  
Rafał Dutkiewicz ◽  
Grzegorz Wegrzyn ◽  
Agata Czyż

CgtA is a member of the Obg/Gtp1 subfamily of small GTP-binding proteins. CgtA homologues have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Nevertheless, despite the fact that cgtA is an essential gene in most bacterial species, its function in the regulation of cellular processes is largely unknown. Here it has been demonstrated that in two bacterial species, Escherichia coli and Vibrio harveyi, the cgtA gene product enhances survival of cells after UV irradiation. Expression of the cgtA gene was found to be enhanced after UV irradiation of both E. coli and V. harveyi. Moderate overexpression of cgtA resulted in higher UV resistance of E. coli wild-type and dnaQ strains, but not in uvrA, uvrB, umuC and recA mutant hosts. Overexpression of the E. coli recA gene in the V. harveyi cgtA mutant, which is very sensitive to UV light, restored the level of survival of UV-irradiated cells to the levels observed for wild-type bacteria. Moreover, the basal level of the RecA protein was lower in a temperature-sensitive cgtA mutant of E. coli than in the cgtA + strain, and contrary to wild-type bacteria, no significant increase in recA gene expression was observed after UV irradiation of this cgtA mutant. Finally, stimulation of uvrB gene transcription under these conditions was impaired in the V. harveyi cgtA mutant. All these results strongly suggest that the cgtA gene product is involved in DNA repair processes, most probably by stimulation of recA gene expression and resultant activation of RecA-dependent DNA repair pathways.


1991 ◽  
Vol 11 (5) ◽  
pp. 2399-2405 ◽  
Author(s):  
M L Valencik ◽  
J E McEwen

Expression of the yeast mitochondrial genes COX1 and COX3, which encode subunits I and III of cytochrome oxidase, respectively, is controlled by a common nuclear-encoded trans-acting factor. This protein, encoded by the PET54 gene, controls expression of COX1 at the level of RNA splicing and COX3 at the level of mRNA translation. While the steps of COX1 and COX3 gene expression affected by the PET54 gene product are different, it is possible that the PET54 protein is monofunctional and affects expression of each gene by a single mechanism, such as modulation of RNA secondary structure. The goal of this study was to address whether the PET54 protein is monofunctional or multifunctional with respect to its role in COX1 and COX3 gene expression. Ten insertion mutations, which each resulted in the in-frame addition of four amino acids within the PET54 polypeptide, were generated, and the resulting mutants were characterized for respiration phenotype and mitochondrial gene expression. Five of the ten mutants were respiration deficient. Two of these five mutants were defective in expression of COX3 but not in expression of COX1, while two other mutants had the opposite phenotype (primarily defective in expression of COX1). The fifth mutant was equally defective in expression of both genes. These results demonstrate that the two functions of PET54 are genetically separable and support the idea that the PET54 protein is multifunctional.


2002 ◽  
Vol 184 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Tal Zusman ◽  
Ohad Gal-Mor ◽  
Gil Segal

ABSTRACT To investigate the involvement of RelA in the regulation of Legionella pneumophila virulence, a deletion substitution was constructed in the relA gene. The relA knockout resulted in an undetectable level of ppGpp in the cells during the stationary phase, but the original level was restored when the relA gene product was supplied on a plasmid. The effect of the relA mutation was examined with two systems that are known to be expressed during the stationary phase in L. pneumophila. Pigment production was found to be dependent on the relA gene product, and only one-half as much pigment was produced by the relA mutant as by the wild-type strain. Flagellum gene expression was also found to be dependent on the relA gene product, as determined with a flaA::lacZ fusion. However, the relA gene product was found to be dispensable for intracellular growth both in HL-60-derived human macrophages and in the protozoan host Acanthamoeba castellanii. To determine the involvement of the relA gene product in expression of L. pneumophila genes required for intracellular growth (icm/dot genes), nine icm::lacZ fusions were constructed, and expression of these fusions in the wild-type strain was compared with their expression in relA mutant strains. Expression of only one of the icm::lacZ fusions was moderately reduced in the relA mutant strain. Expression of the nine icm::lacZ fusions was also examined in a strain containing an insertion in the gene that codes for the stationary-phase sigma factor RpoS, and similar results were obtained. We concluded that RelA is dispensable for intracellular growth of L. pneumophila in the two hosts examined and that both RelA and RpoS play minor roles in L. pneumophila icm/dot gene expression.


Sign in / Sign up

Export Citation Format

Share Document