Involvement of the cgtA gene function in stimulation of DNA repair in Escherichia coli and Vibrio harveyi

Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1763-1770 ◽  
Author(s):  
Ryszard Zielke ◽  
Aleksandra Sikora ◽  
Rafał Dutkiewicz ◽  
Grzegorz Wegrzyn ◽  
Agata Czyż

CgtA is a member of the Obg/Gtp1 subfamily of small GTP-binding proteins. CgtA homologues have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Nevertheless, despite the fact that cgtA is an essential gene in most bacterial species, its function in the regulation of cellular processes is largely unknown. Here it has been demonstrated that in two bacterial species, Escherichia coli and Vibrio harveyi, the cgtA gene product enhances survival of cells after UV irradiation. Expression of the cgtA gene was found to be enhanced after UV irradiation of both E. coli and V. harveyi. Moderate overexpression of cgtA resulted in higher UV resistance of E. coli wild-type and dnaQ strains, but not in uvrA, uvrB, umuC and recA mutant hosts. Overexpression of the E. coli recA gene in the V. harveyi cgtA mutant, which is very sensitive to UV light, restored the level of survival of UV-irradiated cells to the levels observed for wild-type bacteria. Moreover, the basal level of the RecA protein was lower in a temperature-sensitive cgtA mutant of E. coli than in the cgtA + strain, and contrary to wild-type bacteria, no significant increase in recA gene expression was observed after UV irradiation of this cgtA mutant. Finally, stimulation of uvrB gene transcription under these conditions was impaired in the V. harveyi cgtA mutant. All these results strongly suggest that the cgtA gene product is involved in DNA repair processes, most probably by stimulation of recA gene expression and resultant activation of RecA-dependent DNA repair pathways.

Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 41-64 ◽  
Author(s):  
Justin Courcelle ◽  
Arkady Khodursky ◽  
Brian Peter ◽  
Patrick O Brown ◽  
Philip C Hanawalt

Abstract The SOS response in UV-irradiated Escherichia coli includes the upregulation of several dozen genes that are negatively regulated by the LexA repressor. Using DNA microarrays containing amplified DNA fragments from 95.5% of all open reading frames identified on the E. coli chromosome, we have examined the changes in gene expression following UV exposure in both wild-type cells and lexA1 mutants, which are unable to induce genes under LexA control. We report here the time courses of expression of the genes surrounding the 26 documented lexA-regulated regions on the E. coli chromosome. We observed 17 additional sites that responded in a lexA-dependent manner and a large number of genes that were upregulated in a lexA-independent manner although upregulation in this manner was generally not more than twofold. In addition, several transcripts were either downregulated or degraded following UV irradiation. These newly identified UV-responsive genes are discussed with respect to their possible roles in cellular recovery following exposure to UV irradiation.


2008 ◽  
Vol 190 (18) ◽  
pp. 6228-6233 ◽  
Author(s):  
Ryoko Tatsumi ◽  
Masaaki Wachi

ABSTRACT We found that Escherichia coli tolC mutants showed increased sensitivity to 5-aminolevulinic acid (ALA), a precursor of porphyrins. The tolC mutant cells grown in the presence of ALA showed a reddish brown color under visible light and a strong red fluorescence under near-UV irradiation. Fluorescence spectrometry and high-performance liquid chromatography analysis showed that the tolC mutant cells grown in the presence of ALA accumulated a large amount of coproporphyrin(ogen) intracellularly. In contrast, the wild-type cells produced coproporphyrin extracellularly. The tolC mutant cells grown in the presence of ALA, which were capable of surviving in the dark, were killed by near-UV irradiation, suggesting that the intracellular coproporphyrin(ogen) renders these cells photosensitive. These results suggest that the TolC-dependent efflux system is involved in the exclusion of porphyrin(ogen)s in E. coli.


2002 ◽  
Vol 184 (19) ◽  
pp. 5307-5316 ◽  
Author(s):  
Knut Jahreis ◽  
Lars Bentler ◽  
Jürgen Bockmann ◽  
Stephan Hans ◽  
Astrid Meyer ◽  
...  

ABSTRACT Although Escherichia coli strain EC3132 possesses a chromosomally encoded sucrose metabolic pathway, its growth on low sucrose concentrations (5 mM) is unusually slow, with a doubling time of 20 h. In this report we describe the subcloning and further characterization of the corresponding csc genes and adjacent genes. The csc regulon comprises three genes for a sucrose permease, a fructokinase, and a sucrose hydrolase (genes cscB, cscK, and cscA, respectively). The genes are arranged in two operons and are negatively controlled at the transcriptional level by the repressor CscR. Furthermore, csc gene expression was found to be cyclic AMP-CrpA dependent. A comparison of the genomic sequences of the E. coli strains EC3132, K-12, and O157:H7 in addition to Salmonella enterica serovar Typhimurium LT2 revealed that the csc genes are located in a hot spot region for chromosomal rearrangements in enteric bacteria. The comparison further indicated that the csc genes might have been transferred relatively recently to the E. coli wild-type EC3132 at around the time when the different strains of the enteric bacteria diverged. We found evidence that a mobile genetic element, which used the gene argW for site-specific integration into the chromosome, was probably involved in this horizontal gene transfer and that the csc genes are still in the process of optimal adaptation to the new host. Selection for such adaptational mutants growing faster on low sucrose concentrations gave three different classes of mutants. One class comprised cscR(Con) mutations that expressed all csc genes constitutively. The second class constituted a cscKo operator mutation, which became inducible for csc gene expression at low sucrose concentrations. The third class was found to be a mutation in the sucrose permease that caused an increase in transport activity.


2011 ◽  
Vol 63 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Biljana Nikolic ◽  
Dragana Mitic-Culafic ◽  
Branka Vukovic-Gacic ◽  
Jelena Knezevic-Vukcevic

The aim of this work was to investigate the antimutagenic potential of monoterpenes from sage and basil in Escherichia coli. The mutagenic potential of monoterpenes was pre-screened with Salmonella/microsome reversion assay in strain TA100 and no mutagenic effect was detected. The antimutagenic potential against UV- 4NQO- and t-BOOH induced mutagenesis was evaluated in E. coli K12 and E. coli WP2 by reversion assays. The obtained results indicate that camphor and thujone reduce UV- and 4NQO-induced mutations; myrcene reduces t-BOOH-induced mutations, while eucalyptol and linalool reduce mutagenicity by all tested mutagens. Considering evolutionary conservation of DNA repair and antioxidative protection, the obtained results indicate that further antigenotoxicity studies should be undertaken in eukaryotes.


2007 ◽  
Vol 75 (6) ◽  
pp. 2937-2945 ◽  
Author(s):  
G. Parthasarathy ◽  
Y. Yao ◽  
K. S. Kim

ABSTRACT Escherichia coli containing the K1 capsule is the leading cause of gram-negative meningitis, but the pathogenesis of this disease is not completely understood. Recent microarray experiments in which we compared the gene expression profile of E. coli K1 associated with human brain microvascular endothelial cells (HBMEC) to the gene expression profile of E. coli K1 not associated with HBMEC revealed that there was a threefold increase in the expression of the fliI gene, encoding an ATP synthase involved in flagellar synthesis and motility, in HBMEC-associated E. coli. In this study, we examined the role of flagella in E. coli K1 association with and invasion of HBMEC by constructing isogenic ΔflhDC, ΔfliI, ΔfliC, and ΔcheW mutants that represented each class of flagellar genes. Mutations that affected the flagellum structure and flagellum formation (ΔflhDC, ΔfliI, and ΔfliC) resulted in significant defects in motility, as well as in HBMEC association and invasion, compared to the characteristics of the wild-type strain when preparations were examined with or without centrifugation. Transcomplementation with the corresponding genes restored the levels of these mutants to the levels of the parent strain. These findings suggest that the HBMEC association and invasion defects of the mutants are most likely related to flagella and less likely due to their motility defects. This conclusion was supported by our demonstration that the cheW mutant was not motile but was able to associate with and invade HBMEC. In addition, purified recombinant flagellin reduced the association of the wild-type strain with HBMEC by ∼40%, while it had no effect on the fliC mutant's association with HBMEC. Together, these findings indicate that flagella promote E. coli K1 binding to HBMEC.


2006 ◽  
Vol 189 (5) ◽  
pp. 1884-1889 ◽  
Author(s):  
Alycia N. Bittner ◽  
Amanda Foltz ◽  
Valerie Oke

ABSTRACT Many bacterial species contain multiple copies of the genes that encode the chaperone GroEL and its cochaperone, GroES, including all of the fully sequenced root-nodulating bacteria that interact symbiotically with legumes to generate fixed nitrogen. In particular, in Sinorhizobium meliloti there are four groESL operons and one groEL gene. To uncover functional redundancies of these genes during growth and symbiosis, we attempted to construct strains containing all combinations of groEL mutations. Although a double groEL1 groEL2 mutant cannot be constructed, we demonstrate that the quadruple groEL1 groESL3 groEL4 groESL5 and groEL2 groESL3 groEL4 groESL5 mutants are viable. Therefore, like E. coli and other species, S. meliloti requires only one groEL gene for viability, and either groEL1 or groEL2 will suffice. The groEL1 groESL5 double mutant is more severely affected for growth at both 30°C and 40°C than the single mutants, suggesting overlapping functions in stress response. During symbiosis the quadruple groEL2 groESL3 groEL4 groESL5 mutant acts like the wild type, but the quadruple groEL1 groESL3 groEL4 groESL5 mutant acts like the groEL1 single mutant, which cannot fully induce nod gene expression and forms ineffective nodules. Therefore, the only groEL gene required for symbiosis is groEL1. However, we show that the other groE genes are expressed in the nodule at lower levels, suggesting minor roles during symbiosis. Combining our data with other data, we conclude that groESL1 encodes the housekeeping GroEL/GroES chaperone and that groESL5 is specialized for stress response.


2021 ◽  
Author(s):  
Christian T. Meyer ◽  
Giancarlo N. Bruni ◽  
Ben Dodd ◽  
Joel M. Kralj

Bacterial evolution of antibiotic resistance is facilitated by non-genetic resistance that increases drug tolerance, buying time for evolutionary innovation. Escherichia coli treated with aminoglycosides permanently lose the ability to divide within four hours, yet we discovered a majority of cells maintain membrane integrity and metabolic activity greater than two days post treatment — a bacterial senescent-like state. These cells, which we term zombies, exhibit dynamic gene expression and metabolomic profiles, even after irreversible exit from the cell cycle. Our data reveal zombies upregulate the phage shock protein pathway to maintain membrane integrity. Remarkably, though unable to form new colonies, zombies increase the antibiotic tolerance of treatment-naïve cells, implying chemical communication. Chemical supplementation and genetic knockouts show that zombies communicate with treatment-naïve cells by secreting indole. In summary, our study revealed a bacterial senescent-like state, induced by aminoglycosides, that decreases the antibiotic susceptibility of multiple bacterial species. Thus, E. coli zombies utilize paracrine signaling to promote non-genetic antibiotic tolerance.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6029 ◽  
Author(s):  
Caroline Zutterling ◽  
Aibek Mursalimov ◽  
Ibtissam Talhaoui ◽  
Zhanat Koshenov ◽  
Zhiger Akishev ◽  
...  

Background DNA repair is essential to counteract damage to DNA induced by endo- and exogenous factors, to maintain genome stability. However, challenges to the faithful discrimination between damaged and non-damaged DNA strands do exist, such as mismatched pairs between two regular bases resulting from spontaneous deamination of 5-methylcytosine or DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved the mismatch-specific DNA glycosylases that can recognize and remove regular DNA bases in the mismatched DNA duplexes. The Escherichia coli adenine-DNA glycosylase (MutY/MicA) protects cells against oxidative stress-induced mutagenesis by removing adenine which is mispaired with 7,8-dihydro-8-oxoguanine (8oxoG) in the base excision repair pathway. However, MutY does not discriminate between template and newly synthesized DNA strands. Therefore the ability to remove A from 8oxoG•A mispair, which is generated via misincorporation of an 8-oxo-2′-deoxyguanosine-5′-triphosphate precursor during DNA replication and in which A is the template base, can induce A•T→C•G transversions. Furthermore, it has been demonstrated that human MUTYH, homologous to the bacterial MutY, might be involved in the aberrant processing of ultraviolet (UV) induced DNA damage. Methods Here, we investigated the role of MutY in UV-induced mutagenesis in E. coli. MutY was probed on DNA duplexes containing cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproduct (6–4PP). UV irradiation of E. coli induces Save Our Souls (SOS) response characterized by increased production of DNA repair enzymes and mutagenesis. To study the role of MutY in vivo, the mutation frequencies to rifampicin-resistant (RifR) after UV irradiation of wild type and mutant E. coli strains were measured. Results We demonstrated that MutY does not excise Adenine when it is paired with CPD and 6–4PP adducts in duplex DNA. At the same time, MutY excises Adenine in A•G and A•8oxoG mispairs. Interestingly, E. coli mutY strains, which have elevated spontaneous mutation rate, exhibited low mutational induction after UV exposure as compared to MutY-proficient strains. However, sequence analysis of RifR mutants revealed that the frequencies of C→T transitions dramatically increased after UV irradiation in both MutY-proficient and -deficient E. coli strains. Discussion These findings indicate that the bacterial MutY is not involved in the aberrant DNA repair of UV-induced DNA damage.


Genetics ◽  
1972 ◽  
Vol 70 (4) ◽  
pp. 495-510
Author(s):  
M Stodolsky ◽  
M Engel Rae ◽  
E Mullenbach

ABSTRACT Escherichia coli with the proA–proB–lac deletion ×111 (Δ111) can be transduced with bacteriophage P1 propagated on a wild-type lac  + donor. Though the donor lac  + genes cannot be integrated by replacement of the recipient Δ111 marker, the transduction process has the characteristics generally associated with generalized transduction of bacterial genes. Transduction does not require P1 helper infection, is stimulated by UV irradiation of transducing particles, and does require homology between the donor lac  + chromosome and the recipient Δ111 chromosome. Among transductants produced through multiple P1 infection, a minority of P1 dl lysogens are present. But the majority of the transductants have unstable lac  + units, designated lac V, which are without detected P1 gene content. LacV is tightly linked to the Δ111 locus. Instability of lac  + is eliminated when a recombination deficiency is introduced through a substitution of recA1 for rec  +. The properties of the Δ111/lacV strains are attributable to a chromosome in which lac  + is situated between units of a genetic duplication beside the Δ111 locus. To explain the formation of partially diploid chromosomes we suggest that chromosome fragment integration is sometimes accomplished through a single aberrant recombination, a fusion of genetically heterologous DNA ends, and a single legitimate crossover.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lingyue An ◽  
Weizhou Wu ◽  
Shujue Li ◽  
Yongchang Lai ◽  
Dong Chen ◽  
...  

Escherichia coli (E. coli) is closely associated with the formation of kidney stones. However, the role of E. coli in CaOx stone formation is not well understood. We explored whether E. coli facilitate CaOx stone formation and its mechanism. Stone and urine cultures were reviewed from kidney stone formers. The ability of calcium oxalate monohydrate (COM) aggregation was detected to evaluate the influence of uropathogenic E. coli, then gel electrophoresis and nanoLC-MS/MS to detect the crystal-adhered protein. Flagellin (Flic) and polyphosphate kinase 1 (PPK1) were screened out following detection of their role on crystal aggregation, oxidative injury, and inflammation of HK-2 cell in vitro. By transurethral injection of wild-type, Ppk1 mutant and Flic mutant strains of E. coli and intraperitoneally injected with glyoxylate in C57BL/6J female mice to establish an animal model. We found that E. coli was the most common bacterial species in patients with CaOx stone. It could enhance CaOx crystal aggregation both in vitro and in vivo. Flagellin was identified as the key molecules regulated by PPK1, and both of them could facilitate the crystal aggregation and mediated HK-2 cell oxidative injury and activated the inflammation-related NF-κB/P38 signaling pathway. Wild-type strain of E. coli injection significantly increased CaOx deposition and enhanced oxidative injury and inflammation-related protein expression, and this effect could be reversed by Ppk1 or Flic mutation. In conclusion, E. coli promotes CaOx stone formation via enhancing oxidative injury and inflammation regulated by the PPK1/flagellin, which activated NF-κB/P38 pathways, providing new potential drug targets for the renal CaOx calculus precaution and treatment.


Sign in / Sign up

Export Citation Format

Share Document