Sequential effects on event-related potentials (ERP) and reaction time (RT) during a 10 choice RT task

1985 ◽  
Vol 61 (3) ◽  
pp. S78
Author(s):  
M. Shimokochi ◽  
Y. Nageishi
PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259653
Author(s):  
Hiroki Nakata ◽  
Miho Takezawa ◽  
Keita Kamijo ◽  
Manabu Shibasaki

We investigated modality differences in the N2 and P3 components of event-related potentials (ERPs) between somatosensory and auditory Go/No-go paradigms in eighteen healthy prepubescent children (mean age: 125.9±4.2 months). We also evaluated the relationship between behavioral responses (reaction time, reaction time variability, and omission and commission error rates) and amplitudes and latencies of N2 and P3 during somatosensory and auditory Go/No-go paradigms. The peak latency of No-go-N2 was significantly shorter than that of Go-N2 during somatosensory paradigms, but not during auditory paradigms. The peak amplitude of P3 was significantly larger during somatosensory than auditory paradigms, and the peak latency of P3 was significantly shorter during somatosensory than auditory paradigms. Correlations between behavioral responses and the P3 component were not found during somatosensory paradigms. On the other hand, in auditory paradigms, correlations were detected between the reaction time and peak amplitude of No-go-P3, and between the reaction time variability and peak latency of No-go-P3. A correlation was noted between commission error and the peak latency of No-go-N2 during somatosensory paradigms. Compared with previous adult studies using both somatosensory and auditory Go/No-go paradigms, the relationships between behavioral responses and ERP components would be weak in prepubescent children. Our data provide findings to advance understanding of the neural development of motor execution and inhibition processing, that is dependent on or independent of the stimulus modality.


2019 ◽  
Vol 9 (12) ◽  
pp. 362
Author(s):  
Antonia M. Karellas ◽  
Paul Yielder ◽  
James J. Burkitt ◽  
Heather S. McCracken ◽  
Bernadette A. Murphy

Multisensory integration (MSI) is necessary for the efficient execution of many everyday tasks. Alterations in sensorimotor integration (SMI) have been observed in individuals with subclinical neck pain (SCNP). Altered audiovisual MSI has previously been demonstrated in this population using performance measures, such as reaction time. However, neurophysiological techniques have not been combined with performance measures in the SCNP population to determine differences in neural processing that may contribute to these behavioral characteristics. Electroencephalography (EEG) event-related potentials (ERPs) have been successfully used in recent MSI studies to show differences in neural processing between different clinical populations. This study combined behavioral and ERP measures to characterize MSI differences between healthy and SCNP groups. EEG was recorded as 24 participants performed 8 blocks of a simple reaction time (RT) MSI task, with each block consisting of 34 auditory (A), visual (V), and audiovisual (AV) trials. Participants responded to the stimuli by pressing a response key. Both groups responded fastest to the AV condition. The healthy group demonstrated significantly faster RTs for the AV and V conditions. There were significant group differences in neural activity from 100–140 ms post-stimulus onset, with the control group demonstrating greater MSI. Differences in brain activity and RT between individuals with SCNP and a control group indicate neurophysiological alterations in how individuals with SCNP process audiovisual stimuli. This suggests that SCNP alters MSI. This study presents novel EEG findings that demonstrate MSI differences in a group of individuals with SCNP.


2004 ◽  
Vol 100 (3) ◽  
pp. 617-625 ◽  
Author(s):  
Wolfgang Heinke ◽  
Ramona Kenntner ◽  
Thomas C. Gunter ◽  
Daniela Sammler ◽  
Derk Olthoff ◽  
...  

Background It is an open question whether cognitive processes of auditory perception that are mediated by functionally different cortices exhibit the same sensitivity to sedation. The auditory event-related potentials P1, mismatch negativity (MMN), and early right anterior negativity (ERAN) originate from different cortical areas and reflect different stages of auditory processing. The P1 originates mainly from the primary auditory cortex. The MMN is generated in or in the close vicinity of the primary auditory cortex but is also dependent on frontal sources. The ERAN mainly originates from frontal generators. The purpose of the study was to investigate the effects of increasing propofol sedation on different stages of auditory processing as reflected in P1, MMN, and ERAN. Methods The P1, the MMN, and the ERAN were recorded preoperatively in 18 patients during four levels of anesthesia adjusted with target-controlled infusion: awake state (target concentration of propofol 0.0 microg/ml), light sedation (0.5 microg/ml), deep sedation (1.5 microg/ml), and unconsciousness (2.5-3.0 microg/ml). Simultaneously, propofol anesthesia was assessed using the Bispectral Index. Results Propofol sedation resulted in a progressive decrease in amplitudes and an increase of latencies with a similar pattern for MMN and ERAN. MMN and ERAN were elicited during sedation but were abolished during unconsciousness. In contrast, the amplitude of the P1 was unchanged by sedation but markedly decreased during unconsciousness. Conclusion The results indicate differential effects of propofol sedation on cognitive functions that involve mainly the auditory cortices and cognitive functions that involve the frontal cortices.


Perception ◽  
10.1068/p5620 ◽  
2008 ◽  
Vol 37 (1) ◽  
pp. 96-105 ◽  
Author(s):  
M Sharhidd Taliep ◽  
A St Clair Gibson ◽  
J Gray ◽  
L van der Merwe ◽  
C L Vaughan ◽  
...  

2010 ◽  
Vol 205 (4) ◽  
pp. 521-531 ◽  
Author(s):  
Marianna Papadopoulou ◽  
Ioannis Evdokimidis ◽  
Evangelos Tsoukas ◽  
Asimakis Mantas ◽  
Nikolaos Smyrnis

Sign in / Sign up

Export Citation Format

Share Document