Notch strength of maraging steel

1976 ◽  
Vol 8 (4) ◽  
pp. 669-676 ◽  
Author(s):  
F.L. Joubert ◽  
G.H. Valentin
Author(s):  
I. Neuman ◽  
S.F. Dirnfeld ◽  
I. Minkoff

Experimental work on the spot welding of Maraging Steels revealed a surprisingly low level of strength - both in the as welded and in aged conditions. This appeared unusual since in the welding of these materials by other welding processes (TIG,MIG) the strength level is almost that of the base material. The maraging steel C250 investigated had the composition: 18wt%Ni, 8wt%Co, 5wt%Mo and additions of Al and Ti. It has a nominal tensile strength of 250 KSI. The heat treated structure of maraging steel is lath martensite the final high strength is reached by aging treatment at 485°C for 3-4 hours. During the aging process precipitation takes place of Ni3Mo and Ni3Ti and an ordered solid solution containing Co is formed.Three types of spot welding cycles were investigated: multi-pulse current cycle, bi-pulse cycle and single pulsle cycle. TIG welded samples were also tested for comparison.The microstructure investigations were carried out by SEM and EDS as well as by fractography. For multicycle spot welded maraging C250 (without aging), the dendrites start from the fusion line towards the nugget centre with an epitaxial growth region of various widths, as seen in Figure 1.


2020 ◽  
Vol 52 (1) ◽  
pp. 26-33
Author(s):  
Gurumayum Robert Kenedy ◽  
Yi-Jyun Lin ◽  
Wei-Chun Cheng

AbstractThe Fe-Mn-Al steels claim a low density, and some fall into the category of transformation-induced plasticity (TRIP) steel. In Fe-Mn-Al TRIP steel development, phase transformations play an important role. Herein, the martensitic transformation of an Fe-16.7 Mn-3.4 Al ternary alloy (wt pct) was experimentally discovered, whose equilibrium phases are a single phase of austenite at 1373 K and dual phases of ferrite and austenite at low temperature. Ferritic lath martensite forms in the prior austenite grains after cooling from 1373 K under various cooling rates via quenching, air cooling, and furnace cooling. The formation mechanism of the ferritic lath martensite is different from that of traditional ferritic lath martensite in steel and quite similar to that in maraging steel. A slight strain energy coupled with a small temperature gradient can lead to the formation of ferritic lath martensite in the Fe-Mn-Al alloy after cooling from high temperature. It is also found that micro-twins exist in the ferritic lath martensite.


Author(s):  
W. Tillmann ◽  
L. Wojarski ◽  
T. Henning

AbstractEven though the buildup rate of laser powder bed fusion processes (LPBF) has steadily increased in recent years by using more and more powerful laser systems, the production of large-volume parts is still extremely cost-intensive. Joining of an additively manufactured complex part to a high-volume part made of conventional material is a promising technology to enhance economics. Today, constructors have to select the most economical joining process with respect to the individual field of application. The aim of this research was to investigate the hybrid joint properties of LBPF and conventionally casted 18MAR300 nickel maraging steel depending on the manufacturing process and the heat treatment condition. Therefore, the microstructure and the strength of the hybrid joints manufactured by LPBF or vacuum brazing were examined and compared to solid material and joints of similar material. It was found that the vacuum-brazed hybrid joints using a 50.8-μm-thick AuNi18 foil provide a high tensile strength of 904 MPa which is sufficient for a broad field of application. Furthermore, the additively manufactured hybrid samples offered with 1998 MPa a tensile strength more than twice as high but showed a considerable impact of buildup failures to the strength in general.


Sign in / Sign up

Export Citation Format

Share Document