Positively charged residues influence the degree of SecA dependence in protein translocation across the E. coli inner membrane

FEBS Letters ◽  
1994 ◽  
Vol 347 (2-3) ◽  
pp. 169-172 ◽  
Author(s):  
Helena Andersson ◽  
Gunnar von Heijne
2005 ◽  
Vol 170 (6) ◽  
pp. 881-888 ◽  
Author(s):  
Stephan Meier ◽  
Walter Neupert ◽  
Johannes M. Herrmann

Most inner membrane proteins of mitochondria are synthesized in the cytosol and reach the inner membrane using one of two alternative sorting pathways. On the stop transfer route, proteins are arrested during import at the level of the inner membrane. The conservative sorting pathway involves translocation through the inner membrane and insertion from the matrix. It is unclear how the translocase of the inner membrane 23 protein translocation machinery differentiates between the two classes of proteins. Here we show that proline residues in hydrophobic stretches strongly disfavor the translocation arrest of transmembrane domains (TMDs) and favor the transfer of preproteins to the matrix. We propose that proline residues, together with the hydrophobicity of the TMD and the presence of charged residues COOH-terminally flanking the TMD, are determinants of the intramitochondrial sorting of inner membrane proteins.


1999 ◽  
Vol 32 (2) ◽  
pp. 189-205 ◽  
Author(s):  
Karen S. Jakes ◽  
Paul K. Kienker ◽  
Alan Finkelstein

1. Introduction 1892. Channel properties 1912.1 Voltage-dependent gating 1912.2 Ion permeability 1932.2.1 Selectivity between potassium and chloride 1932.2.2 Permeability to large cations and large anions 1932.3 Single-channel characteristics 1942.4 Molecularity of the channel 1953. Colicin Ia channel topology and protein translocation 1953.1 Channels formed by whole colicin Ia 1953.1.1 General channel topology 1963.1.2 The translocated region 1993.1.3 The nonuniqueness of the upstream membrane-inserted segment 1993.2 Channels formed by the C-terminal domain of colicin Ia 2004. Concluding remarks 2025. Acknowledgement 2036. References 203Colicins are plasmid-encoded proteins, produced by some strains of E. coli, that kill other strains lacking the specific immunity protein encoded by the same plasmid. Most of the colicins have a three-domain structure: a central domain that binds to a receptor in the outer membrane of the target cell; an N-terminal domain that interacts with target cell proteins to move the C-terminal domain across the outer membrane and periplasmic space to the inner membrane; and a C-terminal domain that carries the toxic activity. In some colicins the C-terminal domain is an enzyme that kills the cell by entering the cytoplasm and attacking its DNA (e.g. colicin E2), its ribosomal RNA (e.g. colicin E3), or another target (Schaller et al. 1982; Ogawa et al. 1999). In other colicins, the C-terminal domain forms an ion-conducting channel in the inner membrane that ultimately leads to cell death by allowing essential solutes to leak out of the cell. These colicins, or their isolated C-terminal domains, can also form voltage-dependent channels in planar phospholipid bilayers. (For a review of the E colicins, including enzymatic colicins, see James et al. 1996; for a review of channel-forming colicins, see Cramer et al. 1995; and for a review of colicin import into E. coli, see Lazdunski et al. 1998.) The channel-forming colicins are the subject of this review, with particular emphasis on one member of this group, colicin Ia, and the protein translocation associated with the gating of its channel.


2009 ◽  
Vol 133 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Daniel Basilio ◽  
Stephen J. Juris ◽  
R. John Collier ◽  
Alan Finkelstein

The toxin produced by Bacillus anthracis, the causative agent of anthrax, is composed of three proteins: a translocase heptameric channel, (PA63)7, formed from protective antigen (PA), which allows the other two proteins, lethal and edema factors (LF and EF), to translocate across a host cell's endosomal membrane, disrupting cellular homeostasis. It has been shown that (PA63)7 incorporated into planar phospholipid bilayer membranes forms a channel capable of transporting LF and EF. Protein translocation through the channel is driven by a proton electrochemical potential gradient on a time scale of seconds. A paradoxical aspect of this is that although LFN (the N-terminal 263 residues of LF), on which most of our experiments were performed, has a net negative charge, it is driven through the channel by a cis-positive voltage. We have explained this by claiming that the (PA63)7 channel strongly disfavors the entry of negatively charged residues on proteins to be translocated, and hence the aspartates and glutamates on LFN enter protonated (i.e., neutralized). Therefore, the translocated species is positively charged. Upon exiting the channel, the protons that were picked up from the cis solution are released into the trans solution, thereby making this a proton–protein symporter. Here, we provide further evidence of such a mechanism by showing that if only one SO3−, which is essentially not titratable, is introduced at most positions in LFN, through the reaction of an introduced cysteine residue at those positions with 2-sulfonato-ethyl-methanethiosulfonate, voltage-driven LFN translocation is drastically inhibited. We also find that a site that disfavors the entry of negatively charged residues into the (PA63)7 channel resides at or near its Φ-clamp, the ring of seven phenylalanines near the channel's entrance.


2008 ◽  
Vol 190 (15) ◽  
pp. 5517-5521 ◽  
Author(s):  
Edan R. Hosking ◽  
Michael D. Manson

ABSTRACT MotA contains a conserved C-terminal cluster of negatively charged residues, and MotB contains a conserved N-terminal cluster of positively charged residues. Charge-altering mutations affecting these residues impair motility but do not diminish Mot protein levels. The motility defects are reversed by second-site mutations targeting the same or partner protein.


2000 ◽  
Vol 150 (4) ◽  
pp. 719-730 ◽  
Author(s):  
Yuichiro Kida ◽  
Masao Sakaguchi ◽  
Mitsunori Fukuda ◽  
Katsuhiko Mikoshiba ◽  
Katsuyoshi Mihara

Synaptotagmin II is a type I signal-anchor protein, in which the NH2-terminal domain of 60 residues (N-domain) is located within the lumenal space of the membrane and the following hydrophobic region (H-region) shows transmembrane topology. We explored the early steps of cotranslational integration of this molecule on the endoplasmic reticulum membrane and demonstrated the following: (a) The translocation of the N-domain occurs immediately after the H-region and the successive positively charged residues emerge from the ribosome. (b) Positively charged residues that follow the H-region are essential for maintaining the correct topology. (c) It is possible to dissect the lengths of the nascent polypeptide chains which are required for ER targeting of the ribosome and for translocation of the N-domain, thereby demonstrating that different nascent polypeptide chain lengths are required for membrane targeting and N-domain translocation. (d) The H-region is sufficiently long for membrane integration. (e) Proline residues preceding H-region are critical for N-domain translocation, but not for ER targeting. The proline can be replaced with amino acid with low helical propensity.


Sign in / Sign up

Export Citation Format

Share Document