Influence of chemical changes of the isotropic matrix on physical properties of mesophase pitch

Fuel ◽  
1996 ◽  
Vol 75 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Zuzana Weishauptová ◽  
Jiří Medek
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 728
Author(s):  
David Donnermeyer ◽  
Magdalena Ibing ◽  
Sebastian Bürklein ◽  
Iris Weber ◽  
Maximilian P. Reitze ◽  
...  

The aim of this study was to gain information about the effect of thermal treatment of calcium silicate-based sealers. BioRoot RCS (BR), Total Fill BC Sealer (TFBC), and Total Fill BC Sealer HiFlow (TFHF) were exposed to thermal treatment at 37 °C, 47 °C, 57 °C, 67 °C, 77 °C, 87 °C and 97 °C for 30 s. Heat treatment at 97 °C was performed for 60 and 180 s to simulate inappropriate application of warm obturation techniques. Thereafter, specimens were cooled to 37 °C and physical properties (setting time/flow/film thickness according to ISO 6876) were evaluated. Chemical properties (Fourier-transform infrared spectroscopy) were assessed after incubation of the specimens in an incubator at 37 °C and 100% humidity for 8 weeks. Statistical analysis of physical properties was performed using the Kruskal-Wallis-Test (P = 0.05). The setting time, flow, and film thickness of TFBC and TFHF were not relevantly influenced by thermal treatment. Setting time of BR decreased slightly when temperature of heat application increased from 37 °C to 77 °C (P < 0.05). Further heat treatment of BR above 77 °C led to an immediate setting. FT-IR spectroscopy did not reveal any chemical changes for either sealers. Thermal treatment did not lead to any substantial chemical changes at all temperature levels, while physical properties of BR were compromised by heating. TFBC and TFHF can be considered suitable for warm obturation techniques.


1987 ◽  
Vol 67 (4) ◽  
pp. 747-763 ◽  
Author(s):  
M. A. NAETH ◽  
A. W. BAILEY ◽  
W. B. McGILL

A study was conducted in Solonetzic mixed prairie of southern Alberta to evaluate and determine the longevity of selected ecosystem responses to pipeline installation. Five adjacent natural gas pipelines on a series of rights-of-way (ROW) were studied at three sites. The lines, which were installed in 1957, 1963, 1968, 1972 and 1981, had diameters of 86, 86, 91, 107 and 107 cm, respectively. Soils were analyzed for particle size distribution, bulk density, pH, electrical conductivity, ion composition, and organic matter content. It was concluded that pipeline construction in Solonetzic mixed prairie range-land initially tended to improve surface soil chemical and physical properties compared to blowouts, but reduced soil quality in vegetated native prairie. Surface bulk density increased to 1.3–1.6 Mg m−3 from an undisturbed density of 0.9–1.0 Mg m−3. Increased densities were evident to 55 cm in all 1981 transects except the trench where subsurface densities were reduced. Chemical changes were associated with reduced organic matter and increased salts at the surface. On the basis of differences between the various ages of pipelines (1981, youngest; 1957, oldest) there was evidence for greater amelioration of chemical changes than of physical disturbances over time. The time needed to restore half the lost organic matter was estimated to be approximately 50 y. Key words: Pipeline, Solonetzic soil, rangeland (native), soil chemistry, bulk density, reclamation


2004 ◽  
Vol 71 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Birgitte D Madsen ◽  
Morten D Rasmussen ◽  
Mette O Nielsen ◽  
Lars Wiking ◽  
Lotte B Larsen

We examined the physical and chemical changes in milk during early lactation, and how these changes were affected by leaving one quarter unmilked in either the first or second milking, with the purpose of discriminating between colostrum and normal milk. Milk samples were collected from each quarter of 17 cows during the first 5 d after calving and then after about 7 d and 14 d. Samples were analysed for somatic cell count (SCC), fat, protein, casein, lactose, IgG1, colour, plasmin, pH and coagulation properties. Large variations occurred in both chemical and physical properties throughout the study period. Within six milkings, the concentration of casein decreased by 60%, IgG1 by 94%, and lactose increased by 34%. At milking number 6, rennet coagulation time was lowest and curd firmness was highest. The pH increased from 6·4 to 6·7 over the period of the experiment, and the colour changed from yellow (reddish) to white. Coagulation properties and the pH fell within the range of normal milk after five milkings. Measurement of colour and density appeared to be a potential method for detection of milk unsuitable for the dairy factory. Effects of omitting one quarter in one milking differed between milk components, but seemed to be of little importance to the physical properties.


1976 ◽  
Vol 32 ◽  
pp. 365-377 ◽  
Author(s):  
B. Hauck
Keyword(s):  

The Ap stars are numerous - the photometric systems tool It would be very tedious to review in detail all that which is in the literature concerning the photometry of the Ap stars. In my opinion it is necessary to examine the problem of the photometric properties of the Ap stars by considering first of all the possibility of deriving some physical properties for the Ap stars, or of detecting new ones. My talk today is prepared in this spirit. The classification by means of photoelectric photometric systems is at the present time very well established for many systems, such as UBV, uvbyβ, Vilnius, Geneva and DDO systems. Details and methods of classification can be found in Golay (1974) or in the proceedings of the Albany Colloquium edited by Philip and Hayes (1975).


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Author(s):  
K.P.D. Lagerlof

Although most materials contain more than one phase, and thus are multiphase materials, the definition of composite materials is commonly used to describe those materials containing more than one phase deliberately added to obtain certain desired physical properties. Composite materials are often classified according to their application, i.e. structural composites and electronic composites, but may also be classified according to the type of compounds making up the composite, i.e. metal/ceramic, ceramic/ceramie and metal/semiconductor composites. For structural composites it is also common to refer to the type of structural reinforcement; whisker-reinforced, fiber-reinforced, or particulate reinforced composites [1-4].For all types of composite materials, it is of fundamental importance to understand the relationship between the microstructure and the observed physical properties, and it is therefore vital to properly characterize the microstructure. The interfaces separating the different phases comprising the composite are of particular interest to understand. In structural composites the interface is often the weakest part, where fracture will nucleate, and in electronic composites structural defects at or near the interface will affect the critical electronic properties.


Sign in / Sign up

Export Citation Format

Share Document