stabilization temperature
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4197
Author(s):  
Elisa Maruccia ◽  
Stefania Ferrari ◽  
Mattia Bartoli ◽  
Lorenzo Lucherini ◽  
Giuseppina Meligrana ◽  
...  

Carbon capture is amongst the key emerging technologies for the mitigation of greenhouse gases (GHG) pollution. Several materials as adsorbents for CO2 and other gases are being developed, which often involve using complex and expensive fabrication techniques. In this work, we suggest a sound, easy and cheap route for the production of nitrogen-doped carbon materials for CO2 capture by pyrolysis of electrospun poly(acrylonitrile) (PAN) fibers. PAN fibers are generally processed following specific heat treatments involving up to three steps (to get complete graphitization), one of these being stabilization, during which PAN fibers are oxidized and stretched in the 200–300 °C temperature range. The effect of stabilization temperature on the chemical structure of the carbon nanofibers is investigated herein to ascertain the possible implication of incomplete conversion/condensation of nitrile groups to form pyridine moieties on the CO2 adsorption capacity. The materials were tested in the pure CO2 atmosphere at 20 °C achieving 18.3% of maximum weight increase (equivalent to an uptake of 4.16 mmol g−1), proving the effectiveness of a high stabilization temperature as route for the improvement of CO2 uptake.


Fibers ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 81 ◽  
Author(s):  
Reyna Ojeda-López ◽  
J. Marcos Esparza-Schulz ◽  
Isaac J. Pérez-Hermosillo ◽  
Armin Hernández-Gordillo ◽  
Armando Domínguez-Ortiz

Carbon microfibers (CMF) has been used as an adsorbent material for CO2 and CH4 capture. The gas adsorption capacity depends on the chemical and morphological structure of CMF. The CMF physicochemical properties change according to the applied stabilization and carbonization temperatures. With the aim of studying the effect of stabilization temperature on the structural properties of the carbon microfibers and their CO2 and CH4 adsorption capacity, four different stabilization temperatures (250, 270, 280, and 300 °C) were explored, maintaining a constant carbonization temperature (900 °C). In materials stabilized at 250 and 270 °C, the cyclization was incomplete, in that, the nitrile groups (triple-bond structure, e.g., C≡N) were not converted to a double-bond structure (e.g., C=N), to form a six-membered cyclic pyridine ring, as a consequence the material stabilized at 300 °C resulting in fragile microfibers; therefore, the most appropriate stabilization temperature was 280 °C. Finally, to corroborate that the specific surface area (microporosity) is not the determining factor that influences the adsorption capacity of the materials, carbonization of polyacrylonitrile microfibers (PANMFs) at five different temperatures (600, 700, 800, 900, and 1000 °C) is carried, maintaining a constant temperature of 280 °C for the stabilization process. As a result, the CMF chemical composition directly affects the CO2 and CH4 adsorption capacity, even more directly than the specific surface area. Thus, the chemical variety can be useful to develop carbon microfibers with a high adsorption capacity and selectivity in materials with a low specific surface area. The amount adsorbed at 25 °C and 1.0 bar oscillate between 2.0 and 2.9 mmol/g adsorbent for CO2 and between 0.8 and 2.0 mmol/g adsorbent for CH4, depending on the calcination treatment applicated; these values are comparable with other material adsorbents of greenhouse gases.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 79-86
Author(s):  
Xue-Fei Wang ◽  
Xiao-Long Zhu ◽  
Chi Jiang ◽  
Jian-Min Guan ◽  
Xin Qian ◽  
...  

AbstractThe surface modification of polyacrylonitrile (PAN) fibers with boric acid was utilized to modulate the homogeneity of the radial structure of the PAN fibers during thermal stabilization. Exothermic peaks of the fibers were put off by boric acid, and unreacted nitrile groups of the oxidized PAN fibers increased with the boron content, indicating that boric acid on the fiber surface had an retardant effect on the thermal stabilization of PAN fibers. The relative skin thicknesses of the oxidized PAN fibers were quantitatively measured by sulfuric acid etching and SEM observation. The value increased obviously with the boron content, which could be further elevated by increasing stabilization time or decreasing stabilization temperature. Oxidized PAN fibers with more homogeneous radial structure can thus be obtained with the modification of boric acid, which might be beneficial for the preparation of high performance carbon fibers.


2019 ◽  
Vol 50 (2) ◽  
pp. 224-239 ◽  
Author(s):  
Lilia Sabantina ◽  
Michaela Klöcker ◽  
Martin Wortmann ◽  
José Rodríguez Mirasol ◽  
Tomás Cordero ◽  
...  

Polyacrylonitrile can be used as a base material for thermochemical conversion into carbon. Especially nanofiber mats, produced by electrospinning, are of interest to create carbon nanofibers. Optimal stabilization and carbonization parameters, however, strongly depend on the spatial features of the original material. While differences between nano- and microfibers are well known, this paper shows that depending on the electrospinning method and the solvent used, considerable differences between various nanofiber mats have to be taken into account for the optimization of the stabilization conditions. Here, we examine for the first time polyacrylonitrile nanofiber mats, electrospun with wire electrospinning from the low-toxic dimethyl sulfoxide as a solvent, instead of the typically used needle electrospinning from the toxic dimethylformamide. Additionally, we used inexpensive polyacrylonitrile from knitting yarn instead of highly specialized material, tailored for carbonization. Our results show that by carefully controlling the maximum stabilization temperature and especially the heating rate, fully stabilized polyacrylonitrile fibers without undesired interconnections can be created as precursors for carbonization.


Author(s):  
D. Puspitasari ◽  
T.L. Ginta ◽  
P. Puspitasari ◽  
M. Mustapha

Purpose: The purpose of this study was to investigate the influence of three thermal processing parameter called stress relieving on mechanical properties of the aluminium alloy foam. Design/methodology/approach: The samples were undergone by stress relieving method using vacuum furnace. Hardness measurement was carried out using microhardness Vickers at 150 mN load and 15 s loading time. Compressive strength, plateau stress and energy absorption were calculated using a universal testing machine. Findings: It was found that the highest value of hardness of 192.78 Hv was obtained when the stress relieving process is set with the following parameters: heating (500°C); holding time (120 min) and stabilization temperature (450°C). Since higher heating temperature and longer holding time produce sample with larger grain size and has an adverse effect on the hardness value It was revealed that the mechanical properties of aluminium alloy foam were enhanced when the heating temperature was decreased, holding temperature was diminished and the stabilization temperature was increased. Overall, the presented results showed that the thermal processing parameters such as heating temperature, holding time and stabilization temperature have a significant influence on improving the mechanical properties of aluminium alloy foam. Research limitations/implications: The properties of closed-cell aluminium alloy foam are highly sensitive and depend on the post heat treatment process. The processing parameters should be controlled in order to manipulate the properties of closed-cell aluminium alloy foam. Originality/value: To investigate the influences of these processing parameters on the physical and mechanical properties of the closed-cell aluminium alloy foam.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lilia Sabantina ◽  
Daria Wehlage ◽  
Michaela Klöcker ◽  
Al Mamun ◽  
Timo Grothe ◽  
...  

Due to their electrical and mechanical properties, carbon nanofibers are of large interest for diverse applications, from batteries to solar cells to filters. They can be produced by electrospinning polyacrylonitrile (PAN), stabilizing the gained nanofiber mats, and afterwards, carbonizing them in inert gas. The electrospun base material and the stabilization process are crucial for the results of the carbonization process, defining the whole fiber morphology. While blending PAN with gelatin to gain highly porous nanofibers has been reported a few times in the literature, no attempts have been made yet to stabilize and carbonize these fibers. This paper reports on the first tests of stabilizing PAN/gelatin nanofibers, depicting the impact of different stabilization temperatures and heating rates on the chemical properties as well as the morphologies of the resulting nanofiber mats. Similar to stabilization of pure PAN, a stabilization temperature of 280°C seems suitable, while the heating rate does not significantly influence the chemical properties. Compared to stabilization of pure PAN nanofiber mats, approximately doubled heating rates can be used for PAN/gelatin blends without creating undesired conglutinations, making this base material more suitable for industrial processes.


2018 ◽  
Vol 2 (89) ◽  
pp. 55-63
Author(s):  
D. Puspitasari ◽  
T.L. Ginta ◽  
M. Mustapha ◽  
N. Sallih ◽  
P. Puspitasari

Purpose: This study concerns about the influence of stress relieving parameters on the hardness of closed cell aluminium foam using central composite design. Design/methodology/approach: The responses of three stress relieving parameters: heating temperature, holding time and stabilization temperature are studied and analysed through 20 experimental runs designed according to central composite design. The results of microhardness test corresponded to the microstructural evaluation of closed-cell aluminium foam using optical microscope. Analysis of Variance (ANOVA) technique is employed to study the significance of each parameter on the microhardness property. In this process the design has five levels for each parameter. The stress relieving process of the samples were performed using a vacuum furnace. The hardness test was conducted using a micro hardness tester LM247AT and the microstructure of the samples were obtained using optical microscopy technique. Findings: It was found that the highest value of hardness of 192.78 HV was obtained when the stress relieving process is set with the following parameters: heating (500°C); holding time (120 min) and stabilization temperature (450°C). Since higher heating temperature and longer holding time produce sample with larger grain size and has an adverse effect on the hardness value. Research limitations/implications: Liquid metal and powder metallurgical processing still produces a non-uniform and poorly reproducible cellular structure. This cellular structure demonstrates poor quality difference on decomposition and melting temperature, called anisotropic early expansion. Originality/value: To improve the poor cellular structure quality, stress relieving method is proposed in this study. Stress relieving method can improve the microstructure of the material.


Sign in / Sign up

Export Citation Format

Share Document