Distinguishing soil age and parent material effects on an Ultisol of north-central Wisconsin, USA

Geoderma ◽  
1994 ◽  
Vol 61 (3-4) ◽  
pp. 165-189 ◽  
Author(s):  
J.A. Mason ◽  
C.J. Milfred ◽  
E.A. Nater
2006 ◽  
Vol 65 (1) ◽  
pp. 172-178 ◽  
Author(s):  
Lee Amoroso

AbstractCarbonate rinds have been used for cross-correlation of landforms as well as a quantitative indicator of soil age. Using the measured rind thickness of clasts found within a deposit, whose age has been independently determined, allows the construction of a calibrated surface-age proxy. Measurements were taken at sites within the Mojave Desert, the northwestern Sonoran Desert, the southern Great Basin, and the western Colorado Plateau. These sites are all within about 300 km of the intersection of the borders of the states of California, Arizona, and Nevada. In the study area, elevation varied from 200 to 1200 m, MAP was from 95 to 195 mm, and MAT was from 18.4° to 23.3°C. The calibrated proxy, while not accounting for the effects of parent material or climate on rind development, does show a strong correlation (R2 = 0.74, P < 0.05) between carbonate rind thickness and surface age for deposits of late to middle Pleistocene age. The calibrated chronosequence, rind thickness = 0.0889 + 0.0079 [surface age]), is in general valid over a large region of southwestern United States. This statistical relation suggests that parent material, climate, and elevation may not be as strong a control on carbonate accumulation as is age for younger soils.


1994 ◽  
Vol 42 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Elise G. Pendall ◽  
Jennifer W. Harden ◽  
Sue E. Trumbore ◽  
Oliver A. Chadwick

AbstractThe radiocarbon content and stable isotope composition of soil carbonate are best described by a dynamic system in which isotopic reequilibration occurs as a result of recurrent dissolution and reprecipitation. Depth of water penetration into the soil profile, as well as soil age, determines the degree of carbonate isotope reequilibration. We measured δ13C, δ18O and radiocarbon content of gravel rinds and fine (<2 mm) carbonate in soils of 3 .different ages (1000, 3800, and 6300 14 C yr B.P.) to assess the degree to which they record and preserve a climatic signal. In soils developing in deposits independently dated at 3800 and 6300 radiocarbon yr B.P., carbonate radiocarbon content above 40 cm depth suggests continual dissolution and reprecipitation, presumably due to frequent wetting events. Between 40 and 90 cm depth, fine carbonate is dissolved and precipitated as rinds that are not redissolved subsequently. Below 90 cm depth in these soils, radiocarbon content indicates that inherited, fine carbonate undergoes little dissolution and reprecipitation. In the 3800- and 6300-yr-old soils, δ13C in rind and fine carbonate follows a decreasing trend with depth, apparently in equilibrium with modern soil gas, as predicted by a diffusive model for soil CO2. δ18O also decreases with depth due to greater evaporative enrichment above 50 cm depth. In contrast, carbonate isotopes in a 1000-yr-old deposit do not reflect modern conditions even in surficial horizons; this soil has not undergone significant pedogenesis. There appears to be a lag of at least 1000 but less than 3800 yr before carbonate inherited with parent material is modified by ambient climatic conditions. Although small amounts of carbonate are inherited with the parent material, the rate of pedogenic carbonate accumulation indicates that Ca is derived primarily from eolian and rainfall sources. A model describing carbonate input and radiocarbon decay suggests that fine carbonate below 90 cm is mostly detrital (inherited) and that carbonate rinds have been forming pedogenically at a constant rate since alluvial fans were deposited.


2007 ◽  
Vol 42 (2) ◽  
pp. 147-162 ◽  
Author(s):  
Eric T. Karlstrom

ABSTRACTPedological investigations in the Waterton Park area provide a useful means of testing subdivisions of Quaternary glacial deposits based on geomorphic relations. Soils in the region, however, including Podzols, Brunisols, Luvisols, and Chernozemics, also reflect the influence of soil forming factors other than time. Nonetheless, a chronosequence can be established by comparing time-diagnostic properties of soils on different geomorphic units in areas with similar climate, vegetation, slope and parent material. Properties thought to be most diagnostic of relative soil age include thickness and degree of clay buildup in B horizons and two soil development indices which average degree of development of a number of properties. Pédologie and geomorphic data suggest surface deposits include mountain tills of three or four separate advances and continental tills of two separate advances. Mountain tills are tentatively correlated with the Late Wisconsinan (about 18 ka BP), Late and or Early Wisconsinan (about 100 to 65 ka BP). Late lllinoian (about 200 to 132 ka BP). and Early lllinoian and/or pre-lllinoian (about 400 to 700+ ka BP), whereas continental tills are tentatively correlated with the Late Wisconsinan and Late lllinoian deposits of the U.S. Midcontinent.


1983 ◽  
Vol 20 (3) ◽  
pp. 342-359 ◽  
Author(s):  
Jennifer W. Harden ◽  
Emily M. Taylor

A new quantitative Soil Development Index based on field data has been applied to chronosequences formed under different climatic regimes. The four soil chronosequences, developed primarily on sandy deposits, have some numeric age control and are located in xeric-inland (Merced, Calif.), xeric-coastal (Ventura, Calif.), aridic (Las Cruces, N. Mex.), and udic (Susquehanna Valley, Pa.) soil-moisture regimes. To quantify field properties, points are assigned for developmental increases in soil properties in comparison to the parent material. Currently ten soil-field properties are quantified and normalized for each horizon in a given chronosequence, including two new properties for carbonate-rich soils in addition to the eight properties previously defined. When individual properties or the combined indexes are plotted as a function of numeric age, rates of soil development can be compared in different climates. The results demonstrate that (1) the Soil Development Index can be applied to very different soil types, (2) many field properties develop systematically in different climatic regimes, (3) certain properties appear to have similar rates of development in different climates, and (4) the Profile Index that combines different field properties increases significantly with age and appears to develop at similar rates in different climates. The Soil Development Index can serve as a preliminary guide to soil age where other age control is lacking and can be used to correlate deposits of different geographical and climatic regions.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Manuel Delgado-Baquerizo ◽  
Peter B. Reich ◽  
Richard D. Bardgett ◽  
David J. Eldridge ◽  
Hans Lambers ◽  
...  

Abstract The importance of soil age as an ecosystem driver across biomes remains largely unresolved. By combining a cross-biome global field survey, including data for 32 soil, plant, and microbial properties in 16 soil chronosequences, with a global meta-analysis, we show that soil age is a significant ecosystem driver, but only accounts for a relatively small proportion of the cross-biome variation in multiple ecosystem properties. Parent material, climate, vegetation and topography predict, collectively, 24 times more variation in ecosystem properties than soil age alone. Soil age is an important local-scale ecosystem driver; however, environmental context, rather than soil age, determines the rates and trajectories of ecosystem development in structure and function across biomes. Our work provides insights into the natural history of terrestrial ecosystems. We propose that, regardless of soil age, changes in the environmental context, such as those associated with global climatic and land-use changes, will have important long-term impacts on the structure and function of terrestrial ecosystems across biomes.


1988 ◽  
Vol 62 (03) ◽  
pp. 411-419 ◽  
Author(s):  
Colin W. Stearn

Stromatoporoids are the principal framebuilding organisms in the patch reef that is part of the reservoir of the Normandville field. The reef is 10 m thick and 1.5 km2in area and demonstrates that stromatoporoids retained their ability to build reefal edifices into Famennian time despite the biotic crisis at the close of Frasnian time. The fauna is dominated by labechiids but includes three non-labechiid species. The most abundant species isStylostroma sinense(Dong) butLabechia palliseriStearn is also common. Both these species are highly variable and are described in terms of multiple phases that occur in a single skeleton. The other species described areClathrostromacf.C. jukkenseYavorsky,Gerronostromasp. (a columnar species), andStromatoporasp. The fauna belongs in Famennian/Strunian assemblage 2 as defined by Stearn et al. (1988).


Sign in / Sign up

Export Citation Format

Share Document