Lipopolysaccharide stimulation of RAW 264.7 macrophages induces lipid accumulation and foam cell formation

1993 ◽  
Vol 98 (1) ◽  
pp. 67-82 ◽  
Author(s):  
Janet L. Funk ◽  
Kenneth R. Feingold ◽  
Arthur H. Moser ◽  
Carl Grunfeld
2021 ◽  
Vol 14 (6) ◽  
pp. 567
Author(s):  
Su Wutyi Thant ◽  
Noppawan Phumala Morales ◽  
Visarut Buranasudja ◽  
Boonchoo Sritularak ◽  
Rataya Luechapudiporn

Oxidation of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis. Hemin (iron (III)-protoporphyrin IX) is a degradation product of hemoglobin that can be found in thalassemia patients. Hemin is a strong oxidant that can cause LDL oxidation and contributes to atherosclerosis in thalassemia patients. Lusianthridin from Dendrobium venustrum is a phenolic compound that possesses antioxidant activity. Hence, lusianthridin could be a promising compound to be used against hemin-induced oxidative stress. The major goal of this study is to evaluate the protective effect of lusianthridin on hemin-induced low-density lipoprotein oxidation (he-oxLDL). Here, various concentrations of lusianthridin (0.25, 0.5, 1, and 2 µM) were preincubated with LDL for 30 min, then 5 µM of hemin was added to initiate the oxidation, and oxidative parameters were measured at various times of incubation (0, 1, 3, 6, 12, 24 h). Lipid peroxidation of LDL was measured by thiobarbituric reactive substance (TBARs) assay and relative electrophoretic mobility (REM). The lipid composition of LDL was analyzed by using reverse-phase HPLC. Foam cell formation with he-oxLDL in RAW 264.7 macrophage cells was detected by Oil Red O staining. The results indicated that lusianthridin could inhibit TBARs formation, decrease REM, decrease oxidized lipid products, as well as preserve the level of cholesteryl arachidonate and cholesteryl linoleate. Moreover, He-oxLDL incubated with lusianthridin for 24 h can reduce the foam cell formation in RAW 264.7 macrophage cells. Taken together, lusianthridin could be a potential agent to be used to prevent atherosclerosis in thalassemia patients.


2020 ◽  
Vol 21 (3) ◽  
pp. 817 ◽  
Author(s):  
Alexander N. Orekhov ◽  
Nikita G. Nikiforov ◽  
Vasily N. Sukhorukov ◽  
Marina V. Kubekina ◽  
Igor A. Sobenin ◽  
...  

Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response.


2016 ◽  
Vol 7 (7) ◽  
pp. 3201-3210 ◽  
Author(s):  
Shengjuan Zhao ◽  
Jianke Li ◽  
Lifang Wang ◽  
Xiaoxia Wu

Pomegranate peel polyphenols hindered ox-LDL-induced raw264.7 foam cell formation, by decreasing CD36 and promoting ABCA1 and LXRα expression.


2019 ◽  
Vol 25 (2) ◽  
pp. 174-186
Author(s):  
Helana Jeries ◽  
Nina Volkova ◽  
Claudia Grajeda-Iglesias ◽  
Mahmoud Najjar ◽  
Mira Rosenblat ◽  
...  

Background: Synthetic forms of glucocorticoids (GCs; eg, prednisone, prednisolone) are anti-inflammatory drugs that are widely used in clinical practice. The role of GCs in cardiovascular diseases, including atherosclerosis, is highly controversial, and their impact on macrophage foam cell formation is still unknown. We investigated the effects of prednisone and prednisolone on macrophage oxidative stress and lipid metabolism. Methods and Results: C57BL/6 mice were intraperitoneally injected with prednisone or prednisolone (5 mg/kg) for 4 weeks, followed by lipid metabolism analyses in the aorta and peritoneal macrophages. We also analyzed the effect of serum samples obtained from 9 healthy human volunteers before and after oral administration of prednisone (20 mg for 5 days) on J774A.1 macrophage atherogenicity. Finally, J774A.1 macrophages, human monocyte-derived macrophages, and fibroblasts were incubated with increasing concentrations (0-200 ng/mL) of prednisone or prednisolone, followed by determination of cellular oxidative status, and triglyceride and cholesterol metabolism. Prednisone and prednisolone treatment resulted in a significant reduction in triglyceride and cholesterol accumulation in macrophages, as observed in vivo, ex vivo, and in vitro. These effects were associated with GCs’ inhibitory effect on triglyceride- and cholesterol-biosynthesis rates, through downregulation of diacylglycerol acyltransferase 1 and HMG-CoA reductase expression. Glucocorticoid-induced reduction of cellular lipid accumulation was mediated by the GC receptors on the macrophages, because the GC-receptor antagonist (RU486) abolished these effects. In fibroblasts, unlike macrophages, GCs showed no effects. Conclusion: Prednisone and prednisolone exhibit antiatherogenic activity by protecting macrophages from lipid accumulation and foam cell formation.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Rajesh K Singh ◽  
Abigail S Haka ◽  
Valeria C Barbosa-Lorenzi ◽  
Arky Asmal ◽  
Frederik Lund ◽  
...  

Despite impressive advances in research, prevention, and treatment, atherosclerotic vascular disease remains the leading cause of death in the developed world. Mechanisms of cholesterol accumulation in the arteries have been studied intensively, but the in vivo contributions of different pathways leading to lipid accumulation and foam cell formation are not understood. In the arteries, low-density lipoprotein (LDL) is aggregated and bound to the extracellular matrix. When such aggregated LDL is presented to macrophages, they form a novel acidic, hydrolytic compartment that is topologically extracellular, to which lysosomal enzymes are secreted. Such compartments are observed in vivo in murine atherosclerotic plaque macrophages interacting with cholesterol rich deposits. Using state-of-the-art quantitative and high resolution microscopy techniques, characterization of compartment morphology reveals how macrophages use local actin polymerization to drive plasma membrane remodeling at the interface with aggregated LDL. This leads to sequestration of aggregated LDL into topologically convoluted structures that allow acidification, catabolism and internalization of LDL. We find that a TLR4/MyD88/Syk/PI3 kinase/Akt dependent signaling pathway in macrophages regulates the formation of such catabolic compartments. Consistent with this, deficiency of TLR4 in vivo can protect macrophages from lipid accumulation in murine atherosclerotic plaques. Herein, we provide compelling evidence for a novel form of catabolism that macrophages use to degrade aggregated LDL in vivo during atherosclerosis and this process leads to foam cell formation, cell death and promotes disease progression.


2011 ◽  
Vol 301 (1) ◽  
pp. F236-F243 ◽  
Author(s):  
Yang Yuan ◽  
Lei Zhao ◽  
Yaxi Chen ◽  
John F. Moorhead ◽  
Zac Varghese ◽  
...  

Advanced glycation end products (AGEs) is one of the causative factors of diabetic nephropathy, which is associated with lipid accumulation in glomeruli. This study was designed to investigate whether Nε-(carboxymethyl) lysine (CML; a member of the AGEs family) increases lipid accumulation by impairing the function of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) in human mesangial cells (HMCs). Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The activity of Golgi-processing enzymes was determined using enzyme-based methods, and the translocation of SCAP from the endoplasmic reticulum (ER) to the Golgi was detected by confocal microscopy. CML increased cholesterol accumulation in HMCs. Exposure to CML increased expression and abnormal translocation of SCAP from the ER to the Golgi even in the presence of a high concentration of LDL. The increased SCAP translocation carried more SREBP-2 to the Golgi for activation by proteolytic cleavages, enhancing transcription of 3-hydroxy-3-methylclutaryl-CoA reductase and the LDL receptor. CML increased Golgi mannosidase activity, which may enhance glycosylation of SCAP. This prolonged the half-life and enhanced recycling of SCAP between the ER and the Golgi. The effects of CML were blocked by inhibitors of Golgi mannosidases. AGEs (CML) increased lipid synthesis and uptake, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in HMCs. These data imply that inhibitors of Golgi-processing enzymes might have a potential renoprotective role in prevention of mesangial foam cell formation.


Sign in / Sign up

Export Citation Format

Share Document