Effect of uncompensated ohmic drop in surface linear potential sweep voltammetry Application to the determination of surface rate constants

1983 ◽  
Vol 157 (2) ◽  
pp. 193-203 ◽  
Author(s):  
L Roullier
1983 ◽  
Vol 48 (5) ◽  
pp. 1358-1367 ◽  
Author(s):  
Antonín Tockstein ◽  
František Skopal

A method for constructing curves is proposed that are linear in a wide region and from whose slopes it is possible to determine the rate constant, if a parameter, θ, is calculated numerically from a rapidly converging recurrent formula or from its explicit form. The values of rate constants and parameter θ thus simply found are compared with those found by an optimization algorithm on a computer; the deviations do not exceed ±10%.


1998 ◽  
Vol 63 (7) ◽  
pp. 955-966
Author(s):  
Eva Přibylová ◽  
Miroslav Holík

Four programs for the 1H NMR line shape analysis: two commercial - Winkubo (Bruker) and DNMR5 (QCPE 165) and two written in our laboratory - Newton (in Microsoft Excel) and Simtex (in Matlab) have been tested in order to get highly accurate rate constants of the hindered rotation about a single bond. For this purpose four testing criteria were used, two of them were also developed by us. As supplementary determinations the rate constants obtained for the coalescence temperature and for the thermal racemization of chromatographically separated enantiomers were used which fitted well the temperature dependence of the rate constants determined by the line shape analysis. As a test compound adamantan-1-yl 3-bromo-2,4,6-trimethylphenyl ketone was prepared and studied. It was shown that supermodified simplex method used in our algorithm (Simtex), though time consuming, gives the most accurate values of the rate constants and consequently the calculated thermodynamic parameters Ea, ∆H≠, and ∆S≠ lay in relatively narrow confidence intervals.


1999 ◽  
Vol 64 (11) ◽  
pp. 1770-1779 ◽  
Author(s):  
Herbert Mayr ◽  
Karl-Heinz Müller

The kinetics of the electrophilic additions of four diarylcarbenium ions (4a-4d) to tricarbonyl(η4-cyclohepta-1,3,5-triene)iron (1) have been studied photometrically. The second-order rate constants match the linear Gibbs energy relationship log k20 °C = s(E + N) and yield the nucleophilicity parameter N(1) = 3.69. It is concluded that electrophiles with E ≥ -9 will react with complex 1 at ambient temperature.


Biochemistry ◽  
1991 ◽  
Vol 30 (29) ◽  
pp. 7283-7297 ◽  
Author(s):  
Otto G. Berg ◽  
Bao Zhu Yu ◽  
Joe Rogers ◽  
Mahendra Kumar Jain

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1612
Author(s):  
Andrea Paut ◽  
Ante Prkić ◽  
Ivana Mitar ◽  
Perica Bošković ◽  
Dražan Jozić ◽  
...  

A novel ion-selective electrode with membranes based on iron(III) phosphate and silver sulfide integrated into a completely new electrode body design has been developed for the determination of iron(III) cations. The best response characteristics with linear potential change were found in the iron(III) concentration range from 3.97× 10−5 to 10−2 mol L−1. The detection limit was found to be 2.41× 10−5 mol L−1 with a slope of –20.53 ± 0.63 and regression coefficient of 0.9925, while the quantification limit was 3.97× 10−5 M. The potential change per concentration decade ranged from –13.59 ± 0.54 to –20.53 ± 1.56 for Electrode Body 1 (EB1) and from –17.28 ± 1.04 to –24 ± 1.87 for Electrode Body 2 (EB2), which is presented for the first time in this work. The prepared electrode has a long lifetime and the ability to detect changes in the concentration of iron cations within 20 s. Membrane M1 showed high recoveries in the determination of iron cations in iron(III) standard solutions (98.2–101.2%) as well as in two different pharmaceuticals (98.6–106.5%). This proves that this type of sensor is applicable in the determination of ferric cations in unknown samples, and the fact that all sensor parts are completely manufactured in our laboratory proves the simplicity of the method.


Sign in / Sign up

Export Citation Format

Share Document