An explicit finite difference simulation for chronoamperometry at a disk microelectrode in a channel flow solution

1993 ◽  
Vol 356 (1-2) ◽  
pp. 25-42 ◽  
Author(s):  
Russell J. Tait ◽  
Peter C. Bury ◽  
Barrie C. Finnin ◽  
Barry L. Reed ◽  
Alan M. Bond
2001 ◽  
Vol 123 (6) ◽  
pp. 1159-1172 ◽  
Author(s):  
Mohammad B. Shafii ◽  
Amir Faghri ◽  
Yuwen Zhang

Analytical models for both unlooped and looped Pulsating Heat Pipes (PHPs) with multiple liquid slugs and vapor plugs are presented in this study. The governing equations are solved using an explicit finite difference scheme to predict the behavior of vapor plugs and liquid slugs. The results show that the effect of gravity on the performance of top heat mode unlooped PHP is insignificant. The effects of diameter, charge ratio, and heating wall temperature on the performance of looped and unlooped PHPs are also investigated. The results also show that heat transfer in both looped and unlooped PHPs is due mainly to the exchange of sensible heat.


Geophysics ◽  
2021 ◽  
pp. 1-71
Author(s):  
Hongwei Liu ◽  
Yi Luo

The finite-difference solution of the second-order acoustic wave equation is a fundamental algorithm in seismic exploration for seismic forward modeling, imaging, and inversion. Unlike the standard explicit finite difference (EFD) methods that usually suffer from the so-called "saturation effect", the implicit FD methods can obtain much higher accuracy with relatively short operator length. Unfortunately, these implicit methods are not widely used because band matrices need to be solved implicitly, which is not suitable for most high-performance computer architectures. We introduce an explicit method to overcome this limitation by applying explicit causal and anti-causal integrations. We can prove that the explicit solution is equivalent to the traditional implicit LU decomposition method in analytical and numerical ways. In addition, we also compare the accuracy of the new methods with the traditional EFD methods up to 32nd order, and numerical results indicate that the new method is more accurate. In terms of the computational cost, the newly proposed method is standard 8th order EFD plus two causal and anti-causal integrations, which can be applied recursively, and no extra memory is needed. In summary, compared to the standard EFD methods, the new method has a spectral-like accuracy; compared to the traditional LU-decomposition implicit methods, the new method is explicit. It is more suitable for high-performance computing without losing any accuracy.


2002 ◽  
Vol 24 (1) ◽  
pp. 46-50
Author(s):  
Nguyen Hong Phan ◽  
Nguyen Van Diep

This paper can be considered as continuous part of [1], where the generalized diffusion theory of rigid spherical particle sedimentation in viscous fluid was investigated. Here a numerical solution of non-stationary sedimentation process is obtained by using the explicit finite difference method. The obtained results show that this model can be used for qualitative study of physical phenomenon of sedimentation problem.


1966 ◽  
Vol 88 (4) ◽  
pp. 421-427 ◽  
Author(s):  
H. Z. Barakat ◽  
J. A. Clark

An explicit-finite difference approximation procedure which is unconditionally stable for the solution of the general multidimensional, nonhomogeneous diffusion equation is presented. This method possesses the advantages of the implicit methods, i.e., no severe limitation on the size of the time increment. Also it has the simplicity of the explicit methods and employs the same “marching” type technique of solution. Results obtained by this method for several different problems are compared with the exact solution and with those obtained by other finite-difference methods. For the examples solved the numerical results obtained by the present method are in closer agreement with the exact solution than are those obtained by the other methods.


Sign in / Sign up

Export Citation Format

Share Document