Localization and delocalization in quantum chemistry, vol. 1, atoms and molecules in the ground state

1976 ◽  
Vol 33 (1) ◽  
pp. 157-158
Author(s):  
W.J.O.T.
1986 ◽  
Vol 39 (5) ◽  
pp. 779 ◽  
Author(s):  
WJ van der Meer ◽  
RJ Butselaar ◽  
CA de Lange

A recently developed modulation method is used to obtain cross sections for the photoionisation of ground state neutral to ground state ionic, atomic and molecular chlorine relative to that of the HCl + (X2n 1IZ,3IZ) +-- HCl(XI ~ +) transition at the He Ia wavelength. With the known absolute cross section of the latter process, determined by (e,2e) coincidence spectroscopy, the present ell,periments provide absolute photoionisation cross sections of the CI + epz,l,o) +-- Clep) and Cli (XZ n g, 1IZ,3 IZ) +-- Clz (X I ~ t) transitions. Relative cross sections, previously determined for the transitions to the additional Cl and Clz ionic states accessible with He Ia radiation, are used to obtain absolute cross sections for the Cl+(IDz, ISO) +-- Clep) and Cli(AZnu,1IZ,3IZ, BZ~t) +-- Clz(XI~t) ionisation processes.


1968 ◽  
Vol 46 (19) ◽  
pp. 2127-2131 ◽  
Author(s):  
M. Stupavsky ◽  
L. Krause

3 2P1/2 ↔ 3 2P3/2 excitation transfer in sodium, induced in inelastic collisions with ground-state N2, H2, HD, and D2 molecules, has been investigated in a series of sensitized fluorescence experiments. Mixtures of sodium vapor at a pressure of 5 × 10−7 Torr, and the gases, were irradiated with each NaD component in turn, and the fluorescence which contained both D components was monitored at right angles to the direction of the exciting beam. Measurements of the relative intensities of the NaD fluorescent components yielded the following collision cross sections for excitation transfer. For Na–N2 collisions: Q12(2P1/2 → P3/2) = 144 Å2, Q21(2P1,2 ← 2P3/2) = 76 Å2 for Na–H2 collisions: Q12 = 80 Å2, Q21 = 42 Å2. For Na–HD collisions: Q12 = 84 Å2, Q21 = 44 Å2. For Na–D2 collisions: Q12 = 98 Å2, Q21 = 52 Å2. The cross sections Q21 exhibit a slight resonance effect between the atomic and molecular rotational transitions.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 492
Author(s):  
Philippe Suchsland ◽  
Francesco Tacchino ◽  
Mark H. Fischer ◽  
Titus Neupert ◽  
Panagiotis Kl. Barkoutsos ◽  
...  

We present a hardware agnostic error mitigation algorithm for near term quantum processors inspired by the classical Lanczos method. This technique can reduce the impact of different sources of noise at the sole cost of an increase in the number of measurements to be performed on the target quantum circuit, without additional experimental overhead. We demonstrate through numerical simulations and experiments on IBM Quantum hardware that the proposed scheme significantly increases the accuracy of cost functions evaluations within the framework of variational quantum algorithms, thus leading to improved ground-state calculations for quantum chemistry and physics problems beyond state-of-the-art results.


Sign in / Sign up

Export Citation Format

Share Document