The high frequency fatigue life of some magnesium alloys used in fuel element applications

1966 ◽  
Vol 20 (1) ◽  
pp. 94-103 ◽  
Author(s):  
R.W. Suhr
2021 ◽  
Author(s):  
Himesh Patel

To improve fuel economy and reduce greenhouse gas emissions, magnesium alloys are being considered for automotive and aerospace applications because of their high strength-to-weight ratio. The objective of this thesis was to study monotonic and cyclic deformation behavior of two semi-solid processed (thixomolded) magnesium alloys, AZ91D and AM60B. The fatigue life of these thixomolded alloys was observed to be higher than that of their die cast counterparts. As the total strain amplitude increased, the stress amplitude and plastic strain amplitude increased, while the pseudoelastic modulus decreased. The change in the modulus was attributed to the nonlinear (pseudoelastic) behavior caused by twinning-detwinning during cyclic deformation. The fatigue life increased with decreasing strain ratio, and partial mean stress relaxation occurred mainly in the initial 10-20% of the fatigue life. The fatigue life of theAM60B alloy improved after solution or solution-aging treatment, and the monotonic strength increased by aging, while the thixomolded condition itself exhibited moderate monotonic strength and fatigue life.


2019 ◽  
Vol 16 ◽  
pp. 73-80 ◽  
Author(s):  
Vitalii Knysh ◽  
Sergii Solovei ◽  
Lyudmila Nyrkova ◽  
Illya Klochkov ◽  
Svіatoslav Motrunich

2013 ◽  
Vol 694-697 ◽  
pp. 278-283
Author(s):  
Zhi Qiang Xu

A crucial step to obtain a reliable fatigue life prediction is to determine a proper small load threshold below which the cycles at small loads or stresses with high frequency causing little fatigue damage are truncated from the original load time history. By taking both the peak over threshold theory and the endurance limit threshold into account, a proper small load threshold is proposed in this paper. The optimal threshold should be high enough to remove the high-frequency small cycles and low enough to minimize the loss of the fatigue damage which maybe be truncated by the empirical small-load omitting threshold. Based on this proper threshold, the fatigue life prediction will be more reliable.


2018 ◽  
Vol 284 ◽  
pp. 587-592 ◽  
Author(s):  
I.R. Kuzeev ◽  
E.A. Naumkin ◽  
S.A. Pankratiev ◽  
R.R. Tlyasheva

It was shown that the forced vibrations of objects on resonance frequencies could significantly change resistance of these objects to cyclic loads in a low-cycle loading range and decrease critical compression load under axial compression. We carried out a procedure of fatigue testing performance with simultaneous application of high-frequency vibrations. We developed and produced a device allowing carrying out testing aimed to check shape stability of cylindrical shells and their resistance to forced vibrations. Dependence of fatigue life capability within the low-cycle range on the frequency of applied forced vibrations in four harmonics of resonance frequency was experimentally determined. Fatigue life capability decreased by 1,6 times. Decrease of life capability particularly occurs on frequencies which are presumably connected with minimum in size elements of hierarchy of polycrystalline material structures. It was found out that the forced vibrations on resonance frequency contribute the increase of a number of vibrations, that leads to decrease of critical axial compression force value. Decrease can be by up to 40%. Experimental determination of critical load during application of vibrations allowed obtaining formula for adjusting factor calculation in the formula for permitted compression force calculation.


1974 ◽  
Vol 14 (01) ◽  
pp. 19-24 ◽  
Author(s):  
S.S. Peng ◽  
E.R. Podnieks ◽  
P.J. Cain

Abstract Specimens of Salem limestone were loaded cyclically at a frequency of 2 cycles/sec in uniaxial cyclic compression, tension, and compression-tension. The number of cycles to failure, maximum deformation for each cycle, and load-deformation hysteresis loops were recorded. The fatigue life and fatigue limit values under cyclic compressive loading are comparable with those under cyclic tensile loading, whereas under cyclic compressive-tensile loading they are considerably lower. Introduction The study of rock behavior in cyclic loading has been relatively ignored in the past, even though certain problems in rock mechanics are closely related to cyclic loading. These problems include the effects of percussive drilling and the vibrations generated by blasting. An understanding of the mechanisms of fatigue failure in rock can be expected to help improve drilling efficiency and prevent vibration damage caused by blasting. Because of the lack of bask information on rock behavior under cyclic loading, the Federal Bureau of Mines, Twin Cities Mining Research Center began in 1968 an extensive program for studying cyclic loading effects. This program included the investigation of the behavior of rock loaded cyclically at different frequencies under varying test geometries, loading configurations, and environments. In the high-frequency range, sonic power transducers are being used to apply cyclic loading at a frequency of 10,000 Hz, and an electromagnetic shaker is being used at frequencies from 100 to 1,000 Hz. In the low-frequency range, cyclic loading of 2 to 10 Hz is applied by a closed-loop servocontrolled electrohydraulic testing machine. In each frequency range, experiments are conducted to provide the following information: fatigue limits, fatigue life, energy dissipation, temperature induced in the specimen, and the time history of load and deformation. This paper presents the first phase of be results obtained on specimens of Salem limestone loaded in the low-frequency range. The early findings on the high-frequency effects were reported separately. Recently, the effect of cyclic loading on rock behavior has been receiving more attention and considerable information is being generated. General Loading Concept in Cyclic Loading In conventional strength tests the monotonic loading program is specified by the loading rate and control mode. For cyclic loading, where the load is a periodic function of time, the problem is more complex. To evaluate such material properties as fatigue life, the load must be described systematically and concisely in terms of physically significant parameters. parameters. For a general case, one approach is to divide the cyclic stress into time-independent and time-dependent components. The time-independent component (or mean stress) is the time average of the stress. A cyclic stress with an amplitude A and zero mean can be superimposed on this loading. For the usual case of cyclic loading with steady loading conditions, the stress can be described as follows.(1)= + (t), where f(t) is a periodic function of time, t, and can be represented by a sine or sawtooth wave. Other ways of describing the stress are available such as using the maximum and minimum stresses, which are related to the mean and amplitude:(2)max = . and(3)min = . The key issue is to describe the loading in terms that will correlate with the material properties of interest. The use of amplitude and mean stress to describe cyclic loading separates the time-dependent bona the time-independent portion of the stress because the effect of each portion of the loading should be investigated separately. In analyzing the effect of cyclic loading on rock, another significant factor is the large difference between the tensile strength and the compressive strength. P. 19


Author(s):  
Jefferson Cuadra ◽  
Kavan Hazeli ◽  
Michael Cabal ◽  
Antonios Kontsos

The reliable characterization of fatigue behavior and progressive damage of advanced alloys relies on the monitoring and quantification of parameters such as strain localizations as a result of both crystallographic deformation mechanisms and bulk response. To this aim, this article attempts to directly correlate microstructural strain at specific fatigue life to global strain as well as surface roughness in Magnesium alloys. Strain at the grain scale is calculated using Digital Image Correlation (DIC), while surface topography gradients are computed using roughness data at different stages of the fatigue life. The results are further correlated to Electron Back Scatter Diffraction (EBSD) measurements which reveal the profuse and spatially inhomogeneous nature of the crystallographic deformation mechanisms related to yielding and fatigue crack initiation. Emphasis is given on using multimodal NDE data to formulate first a description of the current state of the material subjected to fatigue loading and on identifying conditions that can probabilistically drive the affected by both local and global response, governing degradation process.


2013 ◽  
Vol 211 ◽  
pp. 83-88
Author(s):  
Marek Cieśla

Usefulness of the magnesium alloys for construction of structural components is determined, apart from their low density, by a number of favourable mechanical properties and in the case of their use for components of transport means additionally by good fatigue strength. In this study, 12 mm diameter extruded rods of AZ31 and AZ61 magnesium alloys were used as test material. After extrusion the rods were annealed at a temperature of 400°C, with a 60 min soaking period and subsequent cooling in air. Cylindrical specimens with a diameter of d0 = 8 mm were made for the fatigue test under high-cycle rotary bending conditions with the cycle asymmetry coefficient R = -1. The tests were carried out for a limited fatigue strength range. Examination of microstructure of tested alloys and fatigue fractography were also performed. During the high-cycle fatigue tests it was found that the AZ61 alloy has a longer fatigue life. Based on the obtained results, fatigue life characteristics of the tested materials were drawn up.


Sign in / Sign up

Export Citation Format

Share Document