Thermal design problems with high speed ICs—I

1971 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
B A Marlow

Experience shows that the reliability of large turbogenerators depends substantially on the quality of detail design, particularly the quality of the mechanical design. In addition to the design problems common to all high-speed rotating machinery, the mechanical design of generators must take account of certain electrical requirements. This paper gives an insight into the detail mechanical design of large turbogenerators paying particular attention to the interaction of electrical requirements on the mechanical design.


Author(s):  
S. Naik ◽  
J. Krueckels ◽  
M. Henze ◽  
W. Hofmann ◽  
M. Schnieder

This paper describes the aero-thermal development and validation of the GT36 heavy duty gas turbine. The turbine which has evolved from the existing and proven GT26 design, consists of an optimised annulus flow path, higher lift aerofoil profiles, optimised aerodynamic matching between the turbine stages and new and improved cooling systems of the turbine vanes and blades. A major design feature of the turbine has been to control and reduce the aerodynamic losses, associated with the aerofoil profiles, trailing edges, blade tips, endwalls and coolant ejection. The advantages of these design changes to the overall gas turbine efficiency have been verified via extensive experimental testing in high-speed cascade test rigs and via the utilisation of high fidelity multi-row computational fluid dynamics design systems. The thermal design and cooling systems of the turbine vanes, blades have also been improved and optimised. For the first stage vane and blade aerofoils and platforms, multi-row film cooling with new and optimised diffuser cooling holes have been implemented and validated in high speed linear cascades. Additionally, the internal cooling design features of all the blades and vanes were also improved and optimised, which allowed for more homogenous metal temperatures distributions on the aerofoils. The verification and validation of the internal thermal designs of all the turbine components has been confirmed via extensive testing in dedicated Perspex models, where measurements were conducted for local pressure losses, overall flow distributions and local heat transfer coefficients. The turbine is currently being tested and undergoing validation in the GT36 Test Power Plant in Birr, Switzerland. The gas turbine is heavily instrumented with a wide range of validation instrumentation including thermocouples, pressure sensors, strain gauges and five-hole probes. In addition to performance mapping and operational validation, a dedicated thermal paint validation test will also be performed.


1975 ◽  
Vol 12 (03) ◽  
pp. 254-259
Author(s):  
W. F. Perkins

These notes are prepared to highlight some of the points in a review of progress in the development of oceangoing surface effect ships over the past ten years. In 1965, considerable interest was generated with respect to the application of large—more than 4000-tons—SES in ocean commerce. Since that time, considerable effort has been devoted to addressing the technical design problems associated with such ships. Emphasis has shifted in the near term to a military ship of about 2000-tons gross weight. Nonetheless, many of the design solutions to technical problems at the 2000-ton size are applicable to any large, high-speed SES. Thus, progress and success in the Navy programs can lead eventually to commercial application of SES.


2017 ◽  
Vol 2017 ◽  
pp. 1-18
Author(s):  
Cheng-Chi Wang

In recent years, spiral-grooved air bearing systems have attracted much attention and are especially useful in precision instruments and machines with spindles that rotate at high speed. Load support can be multidirectional and this type of bearing can also be very rigid. Studies show that some of the design problems encountered are dynamic and include critical speed, nonlinearity, gas film pressure, unbalanced rotors, and even poor design, all of which can result in the generation of chaotic aperiodic motion and instability under certain conditions. Such irregular motion on a large scale can cause severe damage to a machine or instrument. Therefore, understanding the conditions under which aperiodic behaviour and vibration arise is crucial for prevention. In this study, numerical analysis, including the Finite Difference and Differential Transformation Methods, is used to study these effects in detail in a front opposed-hemispherical spiral-grooved air bearing system. It was found that different rotor masses and bearing number could cause undesirable behaviour including periodic, subperiodic, quasi-periodic, and chaotic motion. The results obtained in this study can be used as a basis for future bearing system design and the prevention of instability.


2009 ◽  
Vol 2009.19 (0) ◽  
pp. 151-154
Author(s):  
Yutaka HIRANO ◽  
Takayuki YAMADA ◽  
Nozomu KOGISO ◽  
Shinji NISHIWAKI

1987 ◽  
Vol 12 (3) ◽  
pp. 175-189 ◽  
Author(s):  
EDUARDO BASCARAN ◽  
FARROKH MISTREE ◽  
RICHARD B. BANNEROT

Author(s):  
Leila Choobineh ◽  
Ankur Jain ◽  
Jared Jones

Thermal modeling and temperature prediction in 3D ICs are important for improving performance and reliability. A number of numerical and analytical models have been developed for thermal analysis of 3D ICs. However, there is a relative lack of experimental work to determine key physical parameters in 3D IC thermal design. One such important key parameter is the inter-die thermal resistance between adjacent die bonded together. This paper describes a novel experimental method to measure the value of inter-die thermal resistance between two die in a 3D IC. The effect of heating one die on the temperature of the other die in a two-die stack is measured over a short time period using high speed data acquisition to negate the effect of boundary conditions. Numerical simulation is performed and based on a comparison between experimental data and the numerical model, the inter-die thermal resistance between two die is determined. There is good agreement between experimental measurement and theoretically estimated value of the inter-die thermal resistance. Results from this paper are expected to assist in thermal design and management of 3D ICs.


Sign in / Sign up

Export Citation Format

Share Document