GT36 Turbine Aero-Thermal Development and Validation

Author(s):  
S. Naik ◽  
J. Krueckels ◽  
M. Henze ◽  
W. Hofmann ◽  
M. Schnieder

This paper describes the aero-thermal development and validation of the GT36 heavy duty gas turbine. The turbine which has evolved from the existing and proven GT26 design, consists of an optimised annulus flow path, higher lift aerofoil profiles, optimised aerodynamic matching between the turbine stages and new and improved cooling systems of the turbine vanes and blades. A major design feature of the turbine has been to control and reduce the aerodynamic losses, associated with the aerofoil profiles, trailing edges, blade tips, endwalls and coolant ejection. The advantages of these design changes to the overall gas turbine efficiency have been verified via extensive experimental testing in high-speed cascade test rigs and via the utilisation of high fidelity multi-row computational fluid dynamics design systems. The thermal design and cooling systems of the turbine vanes, blades have also been improved and optimised. For the first stage vane and blade aerofoils and platforms, multi-row film cooling with new and optimised diffuser cooling holes have been implemented and validated in high speed linear cascades. Additionally, the internal cooling design features of all the blades and vanes were also improved and optimised, which allowed for more homogenous metal temperatures distributions on the aerofoils. The verification and validation of the internal thermal designs of all the turbine components has been confirmed via extensive testing in dedicated Perspex models, where measurements were conducted for local pressure losses, overall flow distributions and local heat transfer coefficients. The turbine is currently being tested and undergoing validation in the GT36 Test Power Plant in Birr, Switzerland. The gas turbine is heavily instrumented with a wide range of validation instrumentation including thermocouples, pressure sensors, strain gauges and five-hole probes. In addition to performance mapping and operational validation, a dedicated thermal paint validation test will also be performed.

Author(s):  
Dominik Ebi ◽  
Peter Jansohn

Abstract Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emissions levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300° C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g. pressure, had on the flashback limit was de-coupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.


Author(s):  
A. P. R. Harpin

We describe our range of high temperature (1100°C) pressure sensors capable of measuring both static pressures of several Bar as required by gas turbine and jet engines, and measuring dynamic pressure fluctuations with a total dynamic range of in excess of 100000. This is achieved by a combination of rugged sensor design and our proprietary optical interrogator. This allows operation in harsh environments, EMI immunity, and simultaneous interrogation of not only static and dynamic pressure, but also the temperature of the sensor. This allows the sensor to maintain high accuracy over a wide range of operating temperatures. To date sensors have not been able to offer operation temperatures this high whilst enabling accurate dynamic pressure readings at the locations required. Also the static pressure cannot be retrieved simultaneously in real time from the same sensor. Also the temperature coefficient of the sensor has to be taken into account by measuring the temperature the sensor is operating at. Oxsensis has addressed these issues and we will present results showing dynamic pressure and temperature and explain how we can measure the temperature of the sensor with our interrogation schemes. We will describe the form of the sensor and the test data confirming its suitability for harsh environments. We will also explain the optical interrogator performance and present simulated results. The interrogator may be realised by a slave cavity or preferably on an integrated optical platform. As these sensors are intended for hostile gas turbine and aerospace environments, we will also present data from real life engine trials that we have performed, and compare the data we obtained with existing measurement techniques. Tests on a combustor rig have tested the sensor up to 1000°C, demonstrating that using our sensors in an engine at these temperatures is a realistic prospect. We believe that the ruggedness and performance of these sensors together with our complimentary interrogators mean that they are of significant interest to instrumentation of gas turbine engines and in the future the development of sophisticated engine feedback and emission control schemes, both in land based and aerospace environments.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4329-4334 ◽  
Author(s):  
DONG-JO YANG ◽  
CHOUL-JUN CHOI ◽  
JAE-YEOL KIM

Key parts of the main equipment in a gas turbine may likely be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni , Cr , Al , etc, in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take a long time and also require high cost. In this study, defect diagnostics were tested on the coating layer of an industrial gas turbine blade, using an infrared thermography camera. Since the infrared thermography method can check a temperature distribution by means of non-contact on a wide range of areas, it can advantageously save expense and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this paper includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing to analyze defects on the coating layer of the gas turbine blade.


1996 ◽  
Vol 118 (1) ◽  
pp. 46-53 ◽  
Author(s):  
K. Do¨bbeling ◽  
H. P. Kno¨pfel ◽  
W. Polifke ◽  
D. Winkler ◽  
C. Steinbach ◽  
...  

A novel combustion technique, based on the Double Cone Burner, has been developed and tested. NOx emissions down to very low levels are reached without the usual strong dilution of the fuel for MBtu syngases from oxygen-blown gasification of coal or residual oil. A limited amount of dilution is necessary in order to prevent ignition during the mixing of fuel and combustion air. The relevant properties of the fuel are reviewed in relation to the goal of achieving premixed combustion. The basic considerations lead to a fuel injection strategy completely different from that for natural gas. A high-speed premixing system is necessary due to the very short chemical reaction times of MBtu fuel. Fuel must be prevented from forming ignitable mixtures inside the burner for reliability reasons. A suitable fuel injection method, which can be easily added to the ABB double cone burner, is described. In common with the design of the standard EV burner, the MBtu EV burner with this fuel injection method is inherently safe against flashback. Three-dimensional flow field and combustion modeling is used to investigate the mixing patterns and the location of the reaction front. Two burner test facilities, one operating at ambient and the other at full gas turbine pressure, have been used for the evaluation of different burner designs. The full-pressure tests were carried out with the original gas turbine burner size and geometry. Combining the presented numerical predictive capabilities and the experimental test facilities, burner performance can be reliably assessed for a wide range of MBtu and LBtu fuels (residue oil gasification, waste gasification, coal gasification, etc.). The atmospheric tests of the burner show NOx values below 2 ppm at an equivalence ratio equal to full-load gas turbine operation. The NOx increase with pressure was found to be very high. Nevertheless, NOx levels of 25 vppmd (@ 15 percent O2) have been measured at full gas turbine pressure. Implemented into ABB’s recently introduced gas turbine GT13E2, the new combustion technique will allow a more straightforward IGCC plant configuration without air extraction from the gas turbine to be used.


Author(s):  
K. Döbbeling ◽  
H. P. Knöpfel ◽  
W. Polifke ◽  
D. Winkler ◽  
C. Steinbach ◽  
...  

A novel combustion technique, based on the Double Cone Burner, has been developed and tested. NOx emissions down to very low levels are reached without the usual strong dilution of the fuel for MBtu syngases from oxygen blown gasification of coal or residual oil. A limited amount of dilution is necessary in order to prevent ignition during the mixing of fuel and combustion air. The relevant properties of the fuel are reviewed in relation to the goal of achieving premixed combustion. The basic considerations lead to a fuel injection strategy which is completely different from that for natural gas. A high speed premixing system is necessary due to the very short chemical reaction times of MBtu fuel. Fuel must be prevented from forming ignitable mixtures inside the burner for reliability reasons. A suitable fuel injection method, which can be easily added to the ABB double cone burner, is described. In common with the design of the standard EV burner, the MBtu EV burner with this fuel injection method is inherently safe against flashback. Three dimensional flow field and combustion modelling is used to investigate the mixing patterns and the location of the reaction front. Two burner test facilities, one operating at ambient and the other at full gas turbine pressure, have been used for the evaluation of different burner designs. The full pressure tests were carried out with the original gas turbine burner size and geometry. Combing the presented numerical predictive capabilities and the experimental test facilities, burner performance can be reliably assessed for a wide range of MBtu and LBtu fuels (residue oil gasification, waste gasification, coal gasification etc.). The atmospheric tests of the burner show NOx values below 2 ppm at an equivalence ratio equal to full load gas turbine operation. The NOx increase with pressure was found to be very high. Nevertheless, NOx levels of 25 vppmd (@ 15% O2) have been measured at full gas turbine pressure. Implemented into ABB’s recently introduced gas turbine GT13E2 the new combustion technique will allow a more straightforward IGCC plant configuration without air extraction from the gas turbine to be used.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Julian Girardeau ◽  
Jérôme Pailhes ◽  
Patrick Sebastian ◽  
Frédéric Pardo ◽  
Jean-Pierre Nadeau

Designing high performance cooling systems suitable for preserving the service lifetime of nozzle guide vanes of turboshaft engines leads to significant aerodynamic losses. These losses jeopardize the performance of the whole engine. In the same time, a low efficiency cooling system may affect the costs of maintenance repair and overhaul of the engine as component life decreases. Consequently, designing cooling systems of gas turbine vanes is related to a multiobjective design problem. In this paper, it is addressed by investigating the functioning of a blade and optimizing its design by means of an evolutionary algorithm. Systematic 3D CFD simulations are performed to solve the aero-thermal problem. Then, the initial multiobjective problem is solved by aggregating the multiple design objectives into one single relevant and balanced mono-objective function; two different types of mono-objective functions are proposed and compared. This paper also proposes to enhance available knowledge in the literature of cooling systems of gas turbine vanes by simulating the internal cooling system of the vane. From simulations thermal efficiency and aerodynamic losses are compared and their respective influences on the global performances of the whole engine are investigated. Finally, several optimal designs are proposed.


Author(s):  
N. C. Balnes ◽  
N. Bressloff

This paper describes studies of simple gas turbine engines integrated with electrical transmission components. Recent developments in high-speed lightweight electrical machines and compact power electronics have enabled alternators and motors to be produced which can be coupled directly to the shaft of a gas turbine without an intermediate gearbox. For applications which require a wide range of power outputs, a single-shaft gas turbine with a high speed alternator can be run at constant speed while varying the current drawn from the alternator. This combines the flexibility of operation of a separate power turbine with the simplicity of a single-shaft engine. With this arrangement, in traction use high torques are obtained at low speed, while near-constant engine efficiency is sustained to about 50% of the design power. In the differential engine, the mechanical linkage between the compressor and the turbine is replaced with an electrical linkage. The turbine drives an alternator, and part of the alternator power is taken by a high-speed motor to drive the compressor. The excess alternator power forms the output of the engine. The compressor and turbine are now able to run at different speeds, and their operating points can be separately optimised at different engine conditions. For such an engine, studies show that high efficiency can be maintained to low power levels.


Author(s):  
Regina Sopper ◽  
Claude Daley ◽  
Bruce Colbourne ◽  
Stephen Bruneau

Design ice loads are generally derived from field measurements or laboratory experiments. The latter commonly neglect the circumstance that most ice-structure interactions occur underwater, despite the fact that studies report higher ice loads if water is present. Other than a few studies on ice extrusion processes, most investigations on ice loads also do not specifically consider the presence of snow or granular ice at the ice-structure interface. To elucidate the influence of water, snow and crushed ice, as external boundary conditions, on ice load magnitude, 71 small-scale laboratory tests were carried out. Testing involved a hydraulic material testing system (MTS machine) located in a cold room at −7°C. Ice specimens were conical shaped with 25 cm in diameter and with 20° and 30° cone angles. Those were impacted with a flat indentation plate at 1 mm/s, 10mm/s and 100 mm/s indentation rates. Time-penetration and time-force histories from the MTS machine, as well as qualitative contact area and local pressure measurements from tactile pressure sensors were collected. Tests were also recorded with a high speed camera and monitored with still photos. The effect of submergence was most evident at high indentation rate, yielding high ice loads. Snow and granular ice caused comparably high ice loads at the high indentation rate. Moreover, the snow and granular ice conditions also significantly increased loads at the low indentation rate. In all cases, higher ice loads were associated with increased effective contact areas.


Author(s):  
Luca Bozzi ◽  
Giampaolo Crosa ◽  
Angela Trucco

This paper provides a simplified mathematical model of twin shaft gas turbine suitable for use in dynamic studies of both electric power generation plants and variable speed mechanical drive applications. The main purpose was to define a simulation block diagram, constituted by algebraic equations and simplified transfer functions, which can be easily derived from the gas plant design data utilising the suitable equations and nomographs presented in the paper. The 3 to 30 MW power range of twin shaft gas turbines is covered. The set-up parameters and details applicable to the model are listed, in the paper, for the various machine sizes and model series. The dynamic model has been developed by simplifying a more detailed one, also here presented, with relatively little loss in dynamic accuracy but considerable advantages in terms of computational time. In the proposed test case, the results of both models have been compared simulating the transient response of a twin shaft gas turbine powering a water-jet propulsor for high-speed ships. The accurate performance prediction capability of both models is verified, for a wide range of operating conditions, by comparison with test results from actual field installations.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Sign in / Sign up

Export Citation Format

Share Document