Preventive fire protection in nuclear power plants

1988 ◽  
Vol 110 (2) ◽  
pp. 185-189 ◽  
Author(s):  
K. Kordina ◽  
R. Dobbernack
Author(s):  
Bernard Gautier ◽  
Mickael Cesbron ◽  
Richard Tulinski

Fire hazard is an important issue for the safety of nuclear power plants: the main internal hazard in terms of frequency, and probably one the most significant with regards to the design costs. AFCEN is publishing in 2018 a new code for fire protection of new built PWR nuclear plants, so-called RCC-F. This code is an evolution of the former ETC-F code which has been applied to different EPR plants under construction (Flamanville 3 (FA3, France), Hinkley Point C (HPC, United Kingdom), Taïshan (TSN, China)). The RCC-F code presents significant enhancement and evolutions resulting from eight years of work by the AFCEN dedicated sub-committee, involving a panel of contributors from the nuclear field. It is now opened to any type of PWR (Pressurized Water Reactor) type of nuclear power plants and not any longer limited to EPR (European Pressurized Reactor) plants. It can potentially be adapted to other light water concepts. Its objective is to help engineers design the fire prevention and protection scheme, systems and equipment with regards to the safety case and the defense in depth taking into account the French and European experience in the field. It deals also with the national regulations, with two appendices dedicated to French and British regulations respectively. The presentation gives an overview of the code specifications and focuses on the significant improvements.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1597
Author(s):  
Butaek Lim ◽  
Kitae Kim ◽  
Hyunyoung Chang ◽  
Heungbae Park ◽  
Youngsik Kim

Cast iron is primarily used in buried piping to transport water in the fire protection system of nuclear power plants; ductile cast iron is generally used for domestic nuclear power plants. In general, the fluid used as fire-extinguishing water in such fire protection systems is tap water, and corrosion inhibitors are not currently added. In this study, the synergistic effect of an adsorption barrier (monoethanolamine) and oxidized film in an environment with a corrosion inhibitor (tungstate) is examined, and the corresponding passivation properties are presented. An immersion corrosion test and electrochemical test in tap water to which only tungstate was added showed suppression of corrosion compared to molybdate at the same concentration. The polarization resistance value of a passivation film in tap water mixed with monoethanolamine and tungstate showed better results than that of the molybdate control. A surface analysis in mixed addition tap water also demonstrated that oxygen ions were sufficiently distributed, including at some spheroidized graphite sites, when tungstate was added compared to molybdate. In addition, the amount of tungsten ions adsorbed on the surface was larger than that of molybdenum ions, and it was confirmed that tungsten ions were evenly distributed over the entire surface.


2020 ◽  
Vol 34 (3) ◽  
pp. 134-140
Author(s):  
Jung-Wun Kim ◽  
Chan-Geun Park

Nuclear power plants (NPPs) in Korea are required to be maintained using a defense in-depth approach to prevent leakage of radioactive substances outside the plant and allow safe shutdown in the event of a fire. Periodic testing must be conducted to ensure that the fire protection facilities perform as required by the laws for various nuclear reactor types. In June 2017, for the first time in Korea, a nuclear plant, Kori Unit 1, was permanently shut down. It was prepared for decommissioning in accordance with the fire protection regulations imposed by the regulatory body. However, a standard protocol is necessary for systematically establishing the fire protection program for decommissioning of NPPs in the future. Therefore, the nuclear legal systems of countries with many operating nuclear power plants, such as the United States, Japan, Canada, and various European countries, were reviewed and guidelines for establishing a fire protection program for decommissioning NPPs was suggested; the fire protection requirements stated by Reg Guide 1.191 (Decommissioning fire protection program for NPPs during decommissioning and permanent shutdown) were used as a model. Suggestions for establishing legal regulations to optimize fire protection programs and secure basic technology for decommissioning NPPs were also made.


2017 ◽  
pp. 56-62
Author(s):  
I. Rezvik ◽  
K. Yefimova ◽  
S. Polyvoda ◽  
V. Iokst

Fire safety of nuclear power plants is a relevant task, which shall be solved using the latest approaches taking into account NPP design and construction practices, including those in foreign countries. The paper describes results of analysis of NPP fire safety in Ukraine based on national and international assessments, identifies problems in this area and presents priority measures aimed at NPP safety improvement, in particular modernization of fire protection of safety system rooms and implementation of gas and powder fire extinguishers at Ukrainian NPPs.


Sign in / Sign up

Export Citation Format

Share Document