passive fire protection
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 42)

H-INDEX

14
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3841
Author(s):  
Svetlana Tretsiakova-McNally ◽  
Adeline Le Douarin ◽  
Paul Joseph ◽  
Malavika Arun

The present paper reports the preliminary results relating to the development, subsequent application, and testing of environmentally benign starch-based formulations for passive fire protection of wood substrates. This study evaluated the effectiveness of starch colloid coatings applied onto the wood surface with a view to improving its performance when exposed to the external heat flux (35 kW/m2) during cone calorimetric tests. The formulations were prepared from aqueous colloid solutions of either starch alone, or in combination with inorganic salts, such as: sodium carbonate, Na2CO3, potassium carbonate, K2CO3, and diammonium hydrogen phosphate, (NH4)2HPO4. The fire performance of Taeda pine wood samples, where their top surfaces were treated with these formulations, was compared with the control sample. The thermal and combustion characteristics of the tested samples were determined with the aid of thermo-gravimetric analysis (TGA), bomb and cone calorimetric techniques, and a steady state tube furnace coupled to an FT-IR spectrometer. A significant boost of fire protection was observed when starch formulations with added inorganic salts were applied onto the wood surfaces, compared with the control sample. For example, the presence of K2CO3 in starch colloid solutions resulted in a notable delay of the ignition and exhibited a reduction in the heat release parameters in comparison with the untreated wood substrate.


2021 ◽  
pp. 073490412110371
Author(s):  
Johan Sarazin ◽  
Elsa Franchini ◽  
Virginie Dréan ◽  
Roman Chiva ◽  
Serge Bourbigot

This article addresses the development of a bench-scale test (jetfire lab) mimicking the fire exposure of the large-scale jetfire facility. An experimental approach was addressed to develop direct correlation and to validate the similitude between bench-scale test and large-scale jetfire. Comparisons were made by testing Zaltex passive fire protection material in the form of panels. Novel setups were designed to make the jetfire lab able to measure time/temperature curves similar to those obtained at a large scale. The assembly of the tested samples was also investigated. An experimental protocol was elaborated to consider the junction between parts of the sample at the reduced scale. Direct correlation was found between the large and the bench scale and it was evidenced that jetfire lab can be used for preliminary study and development of new thermal barriers for fire protection.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4721
Author(s):  
Amalie Gunnarshaug ◽  
Maria-Monika Metallinou ◽  
Torgrim Log

Processing highly flammable products, the oil and gas (O&G) industry can experience major explosions and fires, which may expose pressurized equipment to high thermal loads. In 2020, oil fires occurred at two Norwegian O&G processing plants. To reduce the escalation risk, passive fire protection may serve as a consequence-reducing barrier. For heat or cold conservation, equipment and piping often require thermal insulation, which may offer some fire protection. In the present study, a representative thermal insulation (certified up to 700 °C) was examined with respect to dimensional changes and thermal transport properties after heat treatment to temperatures in the range of 700 °C to 1200 °C. Post heat treatment, the thermal conductivity of each test specimen was recorded at ambient temperature and up to 700 °C, which was the upper limit for the applied measurement method. Based on thermal transport theory for porous and/or amorphous materials, the thermal conductivity at the heat treatment temperature above 700 °C was estimated by extrapolation. The dimensional changes due to, e.g., sintering, were also analyzed. Empirical equations describing the thermal conductivity, the dimensional changes and possible crack formation were developed. It should be noted that the thermal insulation degradation, especially at temperatures approaching 1200 °C, is massive. Thus, future numerical modeling may be difficult above 1150 °C, due to abrupt changes in properties as well as crack development and crack tortuosity. However, if the thermal insulation is protected by a thin layer of more robust material, e.g., passive fire protection to keep the thermal insulation at temperatures below 1100 °C, future modeling seems promising.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ali Sari ◽  
Umid Azimov

PurposeAccidental loadings such as fire constitute a great majority of potential and actual fatalities in both onshore and offshore installations. In order to prevent human loss and for a safe design of an asset, the risk of fire loading needs to be quantified, in terms of both probability/frequency and consequence aspects. In this paper the authors propose a novel risk-based approach for the assessment against accidental fire loading.Design/methodology/approachIn a conventional passive fire protection (PFP) analysis using ductility level analysis (DLA), fire loads are deterministically applied to a structure whose response is then analyzed. The initial PFP scheme is developed based on the analysis and then optimized. This approach is sometimes misinterpreted as a “risk-based” approach; however, it does not take into account the frequency aspect of the risk assessment. In a risk-based PFP analysis using DLA, fire scenarios are developed in a particular target zone. Then DLA is performed to determine the structural consequence. If personnel safety is of interest, the consequence of the structure is then linked to individual risk (IR) to determine fatalities. The amount of PFP to be applied on the structure is fully based on the risk that is produced by the fire scenarios in target zones.FindingsA new perspective on safe design of onshore/offshore structures for accidental loadings is outlined to estimate the associated risk to potential targets such as personnel as well as asset. The proposed assessment methodology will contribute toward identifying the mitigation measures and safety-critical procedures and equipment and toward a safer design.Originality/valueThis paper presents a new perspective in a safer design of onshore and offshore structures for a fire accidental loading based on risk calculation. Risk is defined as a combination of the frequency and consequence. An event frequency analysis is carried out to determine how often one should expect the event to occur. A consequence analysis is carried out to determine the severity levels of the event. In a risk-based consequence analysis, the severity levels are fully determined based on the risk associated with the event. The proposed novel risk-based assessment methodology against accidental fire loading contributes toward fully understanding the risk from an impact to personnel and to asset perspectives and leads toward safer and optimal design.


2021 ◽  
Vol 30 (3) ◽  
pp. 16-30
Author(s):  
A. O. Vorosin ◽  
A. P. Parfenenko

Introduction. The international practice of passive fire protection design, as well as some manufactures of fireproofing products recommend to apply fire proofing substances not only to the main element, whose fire resistance limit is standardized, but also to the elements that do not fall under any fire resistance standards. Various support brackets, pipeline supports (hereinafter — PS), etc. can serve as examples. They are not considered as bearing elements according to SP (Construction Regulations) 2.13130.2020, although they are connected to the structures that have fireproofing applied. It is recommended to apply fireproofing substances to such PS within the range of, at least, 450 mm from the point of attachment to the fireproof structure when the area of the PS cross section exceeds 3,000 mm2. No “supplementary” fireproofing is required by the Russian design and fire protection regulations.The subject of research. A change in the fire resistance limit of steel i-girders, caused by the PS heating, depends on the area of the PS cross section and the location of the point of its attachment.The goal. The goal of the research is to analyze the effect, produced by the area of the cross section and the point of attachment, on the fire resistance limit of fireproof steel i-girders in the course of heating.Materials and methods. ANSYS Workbench 2020 R2 (student version) was applied to perform the numerical simulation.Results. The simulation has shown that the PS, having no fireproofing, influences the fire resistance limit of fireproof structures.Conclusions. Currently available methods of analysis of the fire resistance of steel structures take no account of the fire resistance limit reduction, caused by the heating of the PS that has no fireproofing. The numerical simulation has shown that the fire proofing design must take account of the potential reduction in the fire resistance limit of fireproof structures, exposed to the heated PS that has no fire proofing. The further verification of the effect, produced by the PS, that has no fireproofing, on the time to the limit state of a fireproof steel i-girder requires fire tests and supplementary investigations to evaluate the influence of the PS on the heating of vertical fireproof constructions, including the case of the hydrocarbon fire mode.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3440
Author(s):  
Mohd Na’im Abdullah ◽  
Mazli Mustapha ◽  
Nabihah Sallih ◽  
Azlan Ahmad ◽  
Faizal Mustapha ◽  
...  

The utilisation of rice husk ash (RHA) as an aluminosilicate source in fire-resistant coating could reduce environmental pollution and can turn agricultural waste into industrial wealth. The overall objective of this research is to develop a rice-husk-ash-based geopolymer binder (GB) fire-retardant additive (FR) for alkyd paint. Response surface methodology (RSM) was used to design the experiments work, on the ratio of RHA-based GB to alkyd paint. The microstructure behaviour and material characterisation of the coating samples were studied through SEM analysis. The optimal RHA-based GB FR additive was formulated at 50% wt. FR and 82.628% wt. paint. This formulation showed the result of 270 s to reach 200 °C and 276 °C temperature at equilibrium for thermal properties. Furthermore, it was observed that the increased contents of RHA showed an increment in terms of the total and open porosities and rough surfaces, in which the number of pores on the coating surface plays an important role in the formation of the intumescent char layer. By developing the optimum RHA-based GB to paint formulation, the coating may potentially improve building fire safety through passive fire protection.


Sign in / Sign up

Export Citation Format

Share Document