Soil microbial biomass estimated by the fumigation-incubation procedure: Seasonal fluctuations and influence of soil moisture content

1987 ◽  
Vol 19 (4) ◽  
pp. 397-404 ◽  
Author(s):  
D.J. Ross
2014 ◽  
Vol 1073-1076 ◽  
pp. 638-642
Author(s):  
Hai Ying Guan ◽  
Xin Zhao

In this study, we measured soil microbial biomass C (SMBC) under four different land cover types (canopy, litter, lichen and bare soil) to determine the effects of aridity and salinization on SMBC of a typical desert ecosystem. Results showed that higher SMBC with lower soil salt content and higher soil moisture were found in general if with vegetation, and the SMBC under canopy was especially higher than any other land cover types, which was near double of that of bare soil (115.34μg C g-1 soil vs. 61.88μg C g-1 soil). Linear regression analysis indicated that soil SMBC were positively correlated (p<0.01,r =0.899) with soil moisture but negatively correlated (r =-0.784, p<0.01) with soil salt content. These relationships may represent an evolutionary process, aiding in the conservation of essential vegetation in a fragile desert ecosystem.


2015 ◽  
Vol 39 (2) ◽  
pp. 377-384 ◽  
Author(s):  
Lívia Gabrig Turbay Rangel-Vasconcelos ◽  
Daniel Jacob Zarin ◽  
Francisco de Assis Oliveira ◽  
Steel Silva Vasconcelos ◽  
Cláudio José Reis de Carvalho ◽  
...  

Soil microbial biomass (SMB) plays an important role in nutrient cycling in agroecosystems, and is limited by several factors, such as soil water availability. This study assessed the effects of soil water availability on microbial biomass and its variation over time in the Latossolo Amarelo concrecionário of a secondary forest in eastern Amazonia. The fumigation-extraction method was used to estimate the soil microbial biomass carbon and nitrogen content (SMBC and SMBN). An adaptation of the fumigation-incubation method was used to determine basal respiration (CO2-SMB). The metabolic quotient (qCO2) and ratio of microbial carbon:organic carbon (CMIC:CORG) were calculated based on those results. Soil moisture was generally significantly lower during the dry season and in the control plots. Irrigation raised soil moisture to levels close to those observed during the rainy season, but had no significant effect on SMB. The variables did not vary on a seasonal basis, except for the microbial C/N ratio that suggested the occurrence of seasonal shifts in the structure of the microbial community.


2019 ◽  
Vol 31 (6) ◽  
pp. 2377-2384
Author(s):  
Yong Wang ◽  
Xiongsheng Liu ◽  
Fengfan Chen ◽  
Ronglin Huang ◽  
Xiaojun Deng ◽  
...  

Abstract Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool. It is of great significance to understand the dynamics of soil microbial biomass in plantation for rational management and cultivation of plantation. In order to explore the temporal dynamics and influencing factors of soil microbial biomass of Keteleeria fortunei var. cyclolepis at different stand ages, the plantation of different ages (young forest, 5 years; middle-aged forest, 22 years; mature forest, 40 years) at the Guangxi Daguishan forest station of China were studied to examine the seasonal variation of their microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) by chloroform fumigation extraction method. It was found that among the forests of different age, MBC and MBN differed significantly in the 0–10 cm soil layer, and MBN differed significantly in the 10–20 cm soil layer, but there was no significant difference in MBC for the 10–20 cm soil layer or in either MBC or MBN for the 20–40 cm soil layer. With increasing maturity of the forest, MBC gradually decreased in the 0–10 cm soil layer and increased firstly and then decreased in the 10–20 cm and 20–40 cm soil layers, and MBN increased firstly and then decreased in all three soil layers. As the soil depth increased, both MBC and MBN gradually decreased for all three forests. The MBC and MBN basically had the same seasonal variation in all three soil layers of all three forests, i.e., high in the summer and low in the winter. Correlation analysis showed that MBC was significantly positively correlated with soil organic matter, total nitrogen, and soil moisture, whereas MBN was significantly positively correlated with soil total nitrogen. It showed that soil moisture content was the main factor determining the variation of soil microbial biomass by Redundancy analysis. The results showed that the soil properties changed continuously as the young forest grew into the middle-aged forest, which increased soil microbial biomass and enriched the soil nutrients. However, the soil microbial biomass declined as the middle-age forest continued to grow, and the soil nutrients were reduced in the mature forest.


2010 ◽  
Vol 46 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Petr Baldrian ◽  
Věra Merhautová ◽  
Mirka Petránková ◽  
Tomáš Cajthaml ◽  
Jaroslav Šnajdr

2019 ◽  
Vol 11 (1) ◽  
pp. 121-125 ◽  
Author(s):  
Chowlani Manpoong ◽  
S.K. Tripathi

Changes in land use and improper soil management have led to severe land degradation around the globe through the modification in soil physicochemical and biological processes. This study aimed to assess the soil properties of different land use system types. Soil samples (0-15 cm depth) were collected from five land uses; Rubber Plantation (RP), Oil Palm Plantation (OPP), Bamboo Forest (BF), Fallow Land (FL) and Natural Forest (NF) and analyzed for bulk density, soil texture, soil pH, soil moisture, soil carbon, total nitrogen, ammonium, nitrate, soil microbial biomass carbon, soil respiration. Soil pH was lower than 4.9 in all the sites indicating that the surface soil was highly acidic. Soil organic carbon (SOC) and total nitrogen (TN) values ranged from 2.02% to 2.81% and 0.22% to 0.3% respectively. Soil organic carbon (SOC), total nitrogen (TN) and soil microbial biomass (SMBC) were highly affected by soil moisture. NH4+-N and NO3--N ranged from 5.6 mg kg-1 to 10.2 mg kg-1 and 1.15 mg kg-1 to 2.81 mg kg-1 respectively. NF soils showed the maximum soil microbial biomass carbon (SMBC) whereas the minimum was observed in BF with values ranging from 340 mg kg-1 to 345 mg kg-1. Basal respiration was highest in RP (375 mg CO2 m-2 hr-1) and lowest in BF (224 mg CO2 m-2 hr-1). The findings demonstrated significant effect (p<0.05) of land use change on soil nutrient status and organic matter. Findings also indicated that land use change deteriorated native soil physicochemical and biological properties, but that land restoration practices through longer fallow period (>10 years) likely are successful in promoting the recovery of some soil characteristics.


2021 ◽  
Vol 292 ◽  
pp. 03061
Author(s):  
Shuli Wei ◽  
Jing Fang ◽  
Gongfu Shi ◽  
Yuchen Cheng ◽  
Jianhui Wu ◽  
...  

Global warming poses a serious threat to agriculture and natural systems, in part because of the change of soil moisture content, which changes soil microbial communities and ecological processes. Soil water content is the main factor limiting the growth of plants in soil. Microbial communities rely on soil water to complete their activities, and reveal the changes of underground microbial communities under different soil moisture content, which will help us to further understand the potential impact of climate change on soil ecosystem. To investigate the soil bacterial community structure, we established experiment indoor in the West foot of Daxing’an Mountains with manipulative water content treatments consisting of 20%, 15%, 10%, 5%, 0%. Results showed that bacterial community composition varied significantly with altered drought stress , but community richness did not. The relative abundance of Actinobacteria increased with the increase of drought stress, Proteobacteria, Acidobacteria and Gemmatimonadota decreased with the increase of drought stress, actinobacteria was more likely to accumulate or maintain stable under drought stress, bacterial communities can responding directly to changes in soil moisture.


Sign in / Sign up

Export Citation Format

Share Document