A new approach to the calculation of tight-binding surface density of states in thin films

1977 ◽  
Vol 22 (7) ◽  
pp. 417-420 ◽  
Author(s):  
B. Laks ◽  
J.B. Salzberg
1994 ◽  
Vol 339 ◽  
Author(s):  
Xiao Hu ◽  
Hong Yan ◽  
Fumio S. Ohuchi

ABSTRACTSurface electronic structures of β-SiC reconstructed (001) surfaces and the Al/β-SiC(001) interface have been investigated by employing a tight-binding method. Distinct surface electronic characteristics corresponding to different surface reconstructions are discussed based on the interpretation of surface density of states. The calculations of the Al/β-SiC (001) interface indicate that aluminum deposition on β-SiC(001) surface may induce the substrate to return to the ideal unreconstructed surface and that Al-C interaction is stronger than Al-Si interaction. Al deposition on C-rich surfaces may form a better bonded interface than that on the Si-rich surfaces. Our findings are in good agreement with available experimental and theoretical results.


1993 ◽  
Vol 320 ◽  
Author(s):  
Leo Miglio ◽  
Giovanna Malegori

ABSTRACTBy fitting orthogonal tight binding parameters to the ab inlio bands of Calciumfluorite FeSi2 (γ-phase) and Cesiumcloride FeSi, we calculate the electronic structure (bands and density of states) and the total-energy of the semiconductive, orthorombic β-phase and the disordered, cubic one. The latter, the γ and the β nfigurations, have been recently observed at different annealing temperatures in thin films grown on Si (111) by Molecular Beam Epitaxy. The transferability of our method among different phases allows for a comparison of the cohesive energy curves which, in turn, supplies an interpretation of the relative stability and the growth kinetics.


2004 ◽  
Vol 18 (18) ◽  
pp. 955-962
Author(s):  
MUSA EL-HASAN ◽  
REZEK ESTATIEH

Three terminators have been tested, square root terminator, quadreture terminator and linear terminator, it was found that the linear terminator is the best, so it was used in calculating local density of states (LDOS) and it's orbital decomposition, alloy average density of states, and energy gap for different anion concentrations for InP lattice matched alloy. The results were compared with our previous calculations of (LDOS), and results from other methods. Energy gap was compared with experimental measurements. A five orbital sp3s* per atom model was used in the tight-binding representation of the Hamiltonian.


2000 ◽  
Vol 621 ◽  
Author(s):  
Denis A. Areshkin ◽  
Olga A. Shenderova ◽  
Victor V. Zhirnov ◽  
Alexander F. Pal ◽  
John J. Hren ◽  
...  

ABSTRACTThe electronic structure of nanodiamond clusters containing between 34 and 913 carbon atoms was calculated using a tight-binding Hamiltonian. All clusters had shapes represented by an octahedron with (111) facets with the top and the bottom vertices truncated to introduce (100) surfaces. The tight-binding Hamiltonian consisted of environment-dependent matrix elements, and C-H parameters fit to reproduce energy states of the cyclic C6 and methane. The calculations predict a density of states similar to bulk diamond for clusters with radii greater than ∼2.5nm, and insignificant differences in the potential distribution between the clusters and bulk diamond for radii greater than ∼1nm. Hydrogen passivated nanodiamond clusters are estimated to have an electron affinity of approximately -1.8 eV.


1995 ◽  
Vol 52 (12) ◽  
pp. R8696-R8699 ◽  
Author(s):  
B. Sinković ◽  
E. Shekel ◽  
S. L. Hulbert

Sign in / Sign up

Export Citation Format

Share Document