Spectrophotometric methods for the determination of tamoxifen citrate

Talanta ◽  
1995 ◽  
Vol 42 (10) ◽  
pp. 1479-1485 ◽  
Author(s):  
C Sastry
Author(s):  
Abbas Shebeeb Al-kadumi ◽  
Sahar Rihan Fadhel ◽  
Mohammed Abdullah Ahmed ◽  
Luma Amer Musa

We proposed two simple, rapid, and convenient spectrophotometric methods are described for the determination of Amoxicillin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in first method) and colorimetric determination of the green colored solution for manganite ion at 610 nm formed after reaction of Amoxicillin with potassium permanganate as oxidant agent (in the second method) in basic medium. The working conditions of the methods were investigated and optimized. Beer's law plot showed a good correlation in the concentration range of 5-45 μg/ml. The detection limits and relative standared deviations were (2.573, 2.814 μg/ml) (2.137, 2.498) for the flame emission photometric method and (1.844, 2.016 μg/ml) (1.645,1.932) for colorimetric methods for capsules and suspensions respectively. The methods were successfully applied to the determination of Amoxicillin in capsules and suspensions, and the obtained results were in good agreement with the label claim. No interference was observed from the commonly encountered additives and expectancies.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mamdouh R. Rezk ◽  
Mina Wadie ◽  
Soheir A. Weshahy ◽  
Mahmoud A. Tantawy

Background: Alfuzosin is recently co-formulated with solifenacin for relieving two coincident urological diseases, namely; benign prostate hyperplasia and overactive bladder Objective: Herein, green, simple and rapid spectrophotometric methods were firstly developed for simultaneous determination of the two cited drugs in their co-formulated pharmaceutical capsule Methods: Alfuzosin, which is the major component in the dosage form, was directly assayed at its extended wavelength at 330.0 nm. The challenging spectrum of the minor component, solifenacin, was resolved by five spectrophotometric methods, namely; dual wavelength (DW) at 210.0 & 230.0 nm, first derivative (1D) at 222.0 nm, ratio difference (RD) at 217.0 - 271.0 nm , derivative ratio (1DD) at 223.0 and mean centering of ratio spectra (MC) at 217.0 nm Results: The Proposed methods were successfully validated as per ICH guidelines. Alfuzosin showed linearity over the range of 4.0 - 70.0 μg/mL, while that of solifenacin were 4.0 - 50.0 μg/mL for DW, 2.0 - 70.0 μg/mL for 1D and RD methods, 1.0 - 70.0 μg/mL for 1DD and 4.0 - 70.0 μg/mL for MC method. Statistical comparison with their official ones showed no noticeable differences. The methods showed good applicability for assaying drugs in their newly combination. Besides eco-scale, the greenness profile of the methods was assessed and compared with the reported spectrophotometric one via the newest metric tool; green analytical procedure index (GAPI). Conclusions: The proposed methods are superior in not only being smart, accurate, selective, robust and time-saving, but also in using distilled water as an eco-friendly and cheap solvent


2006 ◽  
Vol 3 (3) ◽  
pp. 142-145
Author(s):  
P. Ravi Kumar ◽  
P. Bhanu Prakash ◽  
M. Murali Krishna ◽  
M. Santha Yadav ◽  
C. Asha Deepthi

Domperidone is an antiemetic and pantoprazole is an antiulcer drug. Simple, precise, rapid and selective simultaneous equation and Q- analysis UV spectrophotometric methods have been developed for the simultaneous determination of domperidone and pantoprazole from combined tablet dosage forms. The methods involve solving of simultaneous equations and Q-value analysis based on measurement absorptivity at 216, 287 and 290 nm respectively. Linearity lies between 1-15 mcg/mL for domperidone and 0-50 mcg/mL for pantoprazole.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2039
Author(s):  
Gamal A. E. Mostafa ◽  
Ahmed Bakheit ◽  
Najla AlMasoud ◽  
Haitham AlRabiah

The reactions of ketotifen fumarate (KT) with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as π acceptors to form charge transfer (CT) complexes were evaluated in this study. Experimental and theoretical approaches, including density function theory (DFT), were used to obtain the comprehensive, reliable, and accurate structure elucidation of the developed CT complexes. The CT complexes (KT-DDQ and KT-TCNQ) were monitored at 485 and 843 nm, respectively, and the calibration curve ranged from 10 to 100 ppm for KT-DDQ and 2.5 to 40 ppm for KT-TCNQ. The spectrophotometric methods were validated for the determination of KT, and the stability of the CT complexes was assessed by studying the corresponding spectroscopic physical parameters. The molar ratio of KT:DDQ and KT:TCNQ was estimated at 1:1 using Job’s method, which was compatible with the results obtained using the Benesi–Hildebrand equation. Using these complexes, the quantitative determination of KT in its dosage form was successful.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Shilan A. Omer ◽  
Nabil A. Fakhre

In this study, three simple and accurate spectrophotometric methods for simultaneous determination of pyriproxyfen and chlorothalonil residues in cucumbers and cabbages grown in experimental greenhouse were studied. The first method was based on the zero-crossing technique measurement for first and second derivative spectrophotometry. The second method was based on the first derivative of the ratio spectra. However, the third method was based on mean centering of ratio spectra. These procedures lack any previous separation steps. The calibration curves for three spectrophotometric methods are linear in the concentration range of 1–30 μg·mL−1 and 0.5–7 μg·mL−1 for pyriproxyfen and chlorothalonil successively. The recoveries ranged from 82.12–97.40% for pyriproxyfen and 81.51–97.04% for chlorothalonil with relative standard deviations less than 4.95% and 5.45% in all instances for pyriproxyfen and chlorothalonil, respectively. The results obtained from the proposed methods were compared statistically by using one-way ANOVA, and the results revealed there were no significant differences between ratio spectra and mean centering methods with the zero-crossing technique. The proposed methods are successfully applied for the simultaneous estimation of the residue of both pesticides in cucumber and cabbage samples.


Sign in / Sign up

Export Citation Format

Share Document