scholarly journals Charge Transfer Complexes of Ketotifen with 2,3-Dichloro-5,6-dicyano-p-benzoquinone and 7,7,8,8-Tetracyanoquodimethane: Spectroscopic Characterization Studies

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2039
Author(s):  
Gamal A. E. Mostafa ◽  
Ahmed Bakheit ◽  
Najla AlMasoud ◽  
Haitham AlRabiah

The reactions of ketotifen fumarate (KT) with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as π acceptors to form charge transfer (CT) complexes were evaluated in this study. Experimental and theoretical approaches, including density function theory (DFT), were used to obtain the comprehensive, reliable, and accurate structure elucidation of the developed CT complexes. The CT complexes (KT-DDQ and KT-TCNQ) were monitored at 485 and 843 nm, respectively, and the calibration curve ranged from 10 to 100 ppm for KT-DDQ and 2.5 to 40 ppm for KT-TCNQ. The spectrophotometric methods were validated for the determination of KT, and the stability of the CT complexes was assessed by studying the corresponding spectroscopic physical parameters. The molar ratio of KT:DDQ and KT:TCNQ was estimated at 1:1 using Job’s method, which was compatible with the results obtained using the Benesi–Hildebrand equation. Using these complexes, the quantitative determination of KT in its dosage form was successful.

2013 ◽  
Vol 19 (4) ◽  
pp. 529-540 ◽  
Author(s):  
Sheikh El ◽  
Ayman Gouda ◽  
Rham El-Azzazy

A facile, accurate, sensitive and validated spectrophotometric methods for the determination of sumatriptan succinate (SMT) in pure and in dosage forms are described. The methods are based on the formation of charge transfer products between SMT and chromogenic reagents 2,3-dichloro-5,6 dicyano-p-benzoquinone (DDQ), 7,7,8,8-tetracyanoquinodimethane(TCNQ), quinalizarin (Quiz) and alizarin red S (ARS) producing charge transfer complexes which showed an absorption maximum at 461, 841, 567 and 529 nm for DDQ, TCNQ, Quiz and ARS, respectively. The optimization of the reaction conditions such as the type of solvent, reagent concentration and reaction time were investigated. Beer?s law is obeyed in the concentration ranges 1.0-80 mg mL-1. The molar absorptivity, Sandell sensitivity, detection and quantification limits are also calculated. The correlation coefficient was ?0.9994 with a relative standard deviation (R.S.D.) of ? 1.08. The proposed methods were successfully applied for determination of sumatriptan in tablets with good accuracy and precision and without interferences from common additives by applying the standard addition technique. Developed methods have been validated statistically for their accuracy, precision, sensitivity, selectivity, robustness and ruggedness as per ICH guidelines and the results compared favourably with those obtained using the reported method.


2008 ◽  
Vol 5 (3) ◽  
pp. 493-498 ◽  
Author(s):  
Marothu Vamsi Krishna ◽  
Dannana Gowri Sankar

In this study, four simple, fast, accurate and sensitive spectrophotometric methods have been developed for the determination of gemifloxacin mesylate in pharmaceutical formulations. The methods are based on the charge transfer complexation reaction of the drug as n-electron donor with sigma (σ)-acceptor iodine, and thepi(π)-acceptors 2, 3-dichloro-5, 6-dicyano-p-benzoquinone (DDQ)-7,7,8,8-tetra cyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE). The obtained charge transfer complexes were measured at 290nm for iodine (in 1, 2-dichloro ethane), at 470, 840 and 420 nm for DDQ, TCNQ and TCNE (in acetonitrile), respectively. Optimization of different experimental conditions is described. Beer's law is obeyed in the concentration range of 6-30, 2-10, 2.5-12.5 and 1-5 μg mL−1for iodine, DDQ, TCNQ and TCNE methods, respectively. The proposed methods were applied successfully to the determination of GFX in pharmaceutical formulations with good accuracy and precision.


2016 ◽  
Vol 8 (3) ◽  
pp. 1745-1753
Author(s):  
F. Ibrahim ◽  
N. El-Enany ◽  
Sh. Shalan ◽  
Rasha Mostafa Elsharawy

Two simple, accurate and sensitive spectrophotometric methods were carried out to investigate through charge-transfer reactions of risperidone (RIS) as n-electron donor with various π acceptors: 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ) and p-chloranilic acid (pCA). The absorbance of reaction product was measured at 842 and 520 nm for TCNQ and pCA reagents respectively. Different experimental parameters affecting the reactions were carefully studied. The reaction pathway was postulated. The proposed spectrophotometric method was utilized for the analysis of RIS in pure form as well as in its pharmaceutical preparations. Under the optimum reaction conditions, Beer’s law is obeyed over the concentration range of 1-12 µg mL-1 and 10-180 µg mL-1 for TCNQ and pCA respectively. The limit of assays detection (LOD) is 0.114 µg mL-1 and 2.55 µg mL-1 for TCNQ and pCA respectively. The mean recovery percentage was 99.72 ± 1.06 and 100.50 ± 1.07 for TCNQ and pCA respectively. The results were compared favorably with those obtained by comparison method. The proposed method was validated statistically according to ICH guidelines.


2010 ◽  
Vol 7 (4) ◽  
pp. 1507-1513 ◽  
Author(s):  
V. Annapurna ◽  
G. Jyothi ◽  
V. Nagalakshmi ◽  
B. B. V. Sailaja

Simple, accurate and reproducible UV spectrophotometric methods were established for the assay of pyrilamine maleate (PYRA) based on the formation of oxidative coupling and precipitation, charge transfer complexation products. Method A includes the oxidative coupling reaction of PYRA with 3-methyl-2-benzathiazolinone hydrazone (MBTH) in presence of Ce(IV). The formation of oxidative coupling product with 4-amino phenazone (4-AP) in presence of K3Fe(CN)6is incorporated in method B. Precipitation/charge transfer complex formation of the PYRA with tannic acid (TA)/Metol-Cr(VI) in method C were proposed. The optical characteristics such as Beers law limits, molar absorptivity and Sandell’s sensitivity for the methods (A-C) are given. Regression analysis using the method of least squares was made to evaluate the slope (b), intercept (a) and correlation coefficient (r) and standard error of estimation (Se) for each system. Determination of pyrilamine in bulk form and in pharmaceutical formulations were also incorporated.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Ashraf M. Mahmoud

New rapid, sensitive, and accurate kinetic spectrophotometric methods were developed, for the first time, to determine omeprazole (OMZ) in its dosage forms. The methods were based on the formation of charge-transfer complexes with both iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The variables that affected the reactions were carefully studied and optimized. The formed complexes and the site of interaction were examined by UV/VIS, IR, and1H-NMR techniques, and computational molecular modeling. Under optimum conditions, the stoichiometry of the reactions between OMZ and the acceptors was found to be 1 : 1. The order of the reactions and the specific rate constants were determined. The thermodynamics of the complexes were computed and the mechanism of the reactions was postulated. The initial rate and fixed time methods were utilized for the determination of OMZ concentrations. The linear ranges for the proposed methods were 0.10–3.00 and 0.50–25.00   with the lowest LOD of 0.03 and 0.14   for iodine and DDQ, respectively. Analytical performance of the methods was statistically validated; RSD was <1.25% for the precision and <1.95% for the accuracy. The proposed methods were successfully applied to the analysis of OMZ in its dosage forms; the recovery was 98.91–100.32%  0.94–1.84, and was found to be comparable with that of reference method.


2002 ◽  
Vol 12 (9) ◽  
pp. 357-360
Author(s):  
M. Buron ◽  
E. Collet ◽  
M. H. Lemée-Cailleau ◽  
H. Cailleau ◽  
T. Luty ◽  
...  

Mixed-stack charge-transfer (CT) complexes undergoing the neutral-ionic (N-I) phase transition are molecular materials formed of stacks where electron donor (D) and acceptor (A) molecules regularly alternate. In the N phase, the CT is low and molecules are situated on inversion centers, while in the I phase, the increase of CT is accompanied by a lattice distortion (dimerization process and symmetry breaking). The one-dimensional (1D) architecture triggers the chain multistability by stabilizing lattice-relaxed (LR)-CT excitations ...D° A° D° A° $(D^+A^-)(D^+A^-)(D^+A^-)$ Do A" D° A° D°... These 1D nano-scale objects are at the heart of the equilibrium N-I phase transition and govern the fascinating physical properties such as giant dielectric response or photo-induced phase transformations. In this contribution, the 1D character of these critical excitations will be demonstrated by direct observation using high resolution X-Ray diffraction.


1987 ◽  
Vol 42 (3) ◽  
pp. 284-288 ◽  
Author(s):  
Aboul-fetouh E. Mourad

The charge-transfer (CT) complexes of some N-arylcarbamates as donors with a number of π-acceptors have been studied spectrophotometrically. The Lewis basicities of the N-arylcarbamates as well as the types of interactions are discussed. The 1H-NMR spectra of some CT complexes with both 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and 7,7,8,8 tetracyanoquinodimethane (TCNQ) indicate a decrease of the electron density on the donor part of the complex.


Sign in / Sign up

Export Citation Format

Share Document