Similarity in yolk-platelet structure of an ancient bony fish (Acipenser) and an ancient reptile (Sphenodon)

1986 ◽  
Vol 18 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Rainer H. Lange ◽  
Wincenty Kilarski
1975 ◽  
Vol 34 (01) ◽  
pp. 050-062
Author(s):  
Dale H Cowan ◽  
Richard C Graham ◽  
Patricia Shook ◽  
Ronda Griffin

SummaryTo determine the effect on platelet behavior of transient exposure of platelets to ascorbic acid, studies of platelet function and ultrastructure were done before exposure to ascorbic acid at pH 6.5, during exposure to pH 6.5, and after restoration of pH to pre-acidifìcation levels. The effect of ascorbic acid (A. A.) was compared to that of HCl and citric acid (C. A.). ADP- and collagen-induced aggregation of normal platelets were significantly impaired by both A. A. and C. A. but were less affected by HCl. The release of 14C-serotonin was significantly reduced by each agent. The ultra-structure of normal platelets brought to pH 6.5 by A.A. was normal. After neutralization, there was marked dilatation of the open channel system and loss of the disc shape. When platelets were brought to pH 6.5 by A. A., then neutralized, the aggregates which formed after stimulation by ADP or collagen were smaller than normal, the platelets were less closely approximated, and degranulation was less complete. The data show that exposure of platelets to ascorbic acid for short intervals impairs their function when measured after restoration of pH to levels compatible with maximal responses. Platelet survival studies using autologous platelets labelled with 51Cr in the presence or absence of ascorbic acid showed that the recovery of normal platelets was unaffected by ascorbic acid, whereas recovery of platelets from patients with idiopathic thrombocytopenic purpura, idiopathic thrombocythemia, and alcohol-related thrombocytopenia was markedly reduced. The injury resulting from the use of ascorbic acid in preparing platelets for studies of platelet survival in patients with disorders affecting platelets may impair the recovery of the cells, resulting in artifactual changes in the survival studies.


2015 ◽  
Vol 1112 ◽  
pp. 519-523 ◽  
Author(s):  
Jarot Raharjo ◽  
Sri Rahayu ◽  
Tika Mustika ◽  
Masmui ◽  
Dwi Budiyanto

Observation on the effect of adding titanium oxide (TiO2) and magnesium oxide (MgO) on the sintering of α-alumina (Al2O3) has been performed. In this study, technical alumina used as basic material in which the sample is formed by the pressureless sintering/cold press and sintered at 1500°C which is lower than alumina sintering temperature at 1700°C. Elemental analysis, observation of microstructure, hardness, fracture toughness and density measurements were carried out to determine the physical and mechanical properties of alumina. The results indicate a change in the microstructure where the content of the platelet structure are much more than the equilateral structure. At sintering temperature of 1500°C, neck growth occurs at ceramics grain, supported by the results of the density test which indicate perfect compaction has occurred in this process.


2016 ◽  
Vol 13 (116) ◽  
pp. 20160068 ◽  
Author(s):  
Gen Li ◽  
Ulrike K. Müller ◽  
Johan L. van Leeuwen ◽  
Hao Liu

Larvae of bony fish swim in the intermediate Reynolds number ( Re ) regime, using body- and caudal-fin undulation to propel themselves. They share a median fin fold that transforms into separate median fins as they grow into juveniles. The fin fold was suggested to be an adaption for locomotion in the intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic. Using three-dimensional fluid-dynamic computations, we quantified the swimming trajectory from body-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin fold, and identified similar vortices around real larvae with particle image velocimetry. We show that thrust contributions on the body peak adjacent to the upper and lower edges of the fin fold where large left–right pressure differences occur in concert with the periodical generation and shedding of edge vortices. The fin fold enhances effective flow separation and drag-based thrust. Along the body, net thrust is generated in multiple zones posterior to the centre of mass. Counterfactual simulations exploring the effect of having a fin fold across a range of Reynolds numbers show that the fin fold helps larvae achieve high swimming speeds, yet requires high power. We conclude that propulsion in larval fish partly relies on unsteady high-intensity vortices along the upper and lower edges of the fin fold, providing a functional explanation for the omnipresence of the fin fold in bony-fish larvae.


Development ◽  
1965 ◽  
Vol 14 (2) ◽  
pp. 191-212
Author(s):  
G. G. Selman ◽  
G. J. Pawsey

The amphibian yolk platelet is a particular kind of food-reserve granule which may be easily recognized by microscopy and which is abundant in the cytoplasm of amphibian eggs and embryos. Wallace & Karasaki (1963) developed a method by which intact yolk platelets were isolated from eggs of Rana pipiens and were shown by electron microscopy to be practically free from other materials. Chemical analysis of such yolk platelets by Wallace (1963a, b) showed that the crystalline main body is made up of two components, a phosphoprotein of similar amino-acid composition to avian phosvitin and a lipoprotein similar to avian α-lipovitellin, the molecular proportions being 2 to 1 respectively. Surrounding this crystalline main body of the yolk platelet there is a granular peripheral zone which has been reported to contain both protein resembling histone (Horn, 1962) and polysaccharide (Ohno, Karasaki & Takata, 1964).


1991 ◽  
Vol 6 (3) ◽  
pp. 163-187 ◽  
Author(s):  
N. C. Bols ◽  
L. E. J. Lee
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document