Characterization of snake venom components acting on blood coagulation and platelet function

Toxicon ◽  
1992 ◽  
Vol 30 (9) ◽  
pp. 945-966 ◽  
Author(s):  
Chaoho Ouyang ◽  
Che-Ming Teng ◽  
Tur-Fu Huang
2019 ◽  
Vol 19 (22) ◽  
pp. 1981-1989 ◽  
Author(s):  
Jeny Bastida ◽  
Alejandro Crampet ◽  
Melitta Meneghel ◽  
Victor Morais

Background: For many decades, research on snake venom toxinology focused mainly on the venoms of Viperidae and Elapidae species, which were traditionally the only ones considered as venomous. However, much less interest has been given to the venom produced by opisthoglyphous colubrid snakes, since they were typically considered of no clinical relevance. Objective: The aim of this work is to perform a preliminary biochemical and venomic characterization of the venom of the colubrid snake Phalotris lemniscatus, a species that has been responsible for two relevant cases of envenomation in Uruguay. Methods: We extracted venom from collected specimens and performed different biochemical and proteomic assays to understand its toxin composition. Results: We found that the venom of P. lemniscatus is composed of protein families typically present in snake venoms, such as metallo and serine preoteases, L-amino acid oxidases, phospholipases A2s, Ctype lectines-like, Kunitz-type proteins and three-finger toxins. Activity assays demonstrated a highly active gelatinolytic component as well as a potent capability to induce blood coagulation. Conclusion: The results indicate that the venom of P. lemniscatus contains hemotoxic activities and components that resemble those found in Viperidae (Bothrops) snakes and that can induce a clinically relevant accident. Further studies are needed to better understand the venom composition of this colubrid snake and its most active compounds.


2020 ◽  
Vol 17 (3) ◽  
pp. 241-254
Author(s):  
Yaqiong Zhang ◽  
Zhiping Jia ◽  
Yunyang Liu ◽  
Xinwen Zhou ◽  
Yi Kong

Background: Deinagkistrodon acutus (D. acutus) and Bungarus multicinctus (B. multicinctus) as traditional medicines have been used for hundreds of years in China. The venoms of these two species have strong toxicity on the victims. Objective: The objective of this study is to reveal the profile of venom proteins and peptides of D. acutus and B. multicinctus. Method: Ultrafiltration, SDS-PAGE coupled with in-gel tryptic digestion and Liquid Chromatography- Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS/MS) were used to characterize proteins and peptides of venoms of D. acutus and B. multicinctus. Results: In the D. acutus venom, 67 proteins (16 protein families) were identified, and snake venom metalloproteinases (SVMPs, 38.0%) and snake venom C-type lectins (snaclecs, 36.7%) were dominated proteins. In the B. multicinctus venom, 47 proteins (15 protein families) were identified, and three-finger toxins (3FTxs, 36.3%) and Kunitz-type Serine Protease Inhibitors (KSPIs, 32.8%) were major components. In addition, both venoms contained small amounts of other proteins, such as Snake Venom Serine Proteinases (SVSPs), Phospholipases A2 (PLA2s), Cysteine-Rich Secreted Proteins (CRISPs), 5'nucleotidases (5'NUCs), Phospholipases B (PLBs), Phosphodiesterases (PDEs), Phospholipase A2 Inhibitors (PLIs), Dipeptidyl Peptidases IV (DPP IVs), L-amino Acid Oxidases (LAAOs) and Angiotensin-Converting Enzymes (ACEs). Each venom also had its unique proteins, Nerve Growth Factors (NGFs) and Hyaluronidases (HYs) in D. acutus, and Cobra Venom Factors (CVFs) in B. multicinctus. In the peptidomics, 1543 and 250 peptides were identified in the venoms of D. acutus and B. multicinctus, respectively. Some peptides showed high similarity with neuropeptides, ACE inhibitory peptides, Bradykinin- Potentiating Peptides (BPPs), LAAOs and movement related peptides. Conclusion: Characterization of venom proteins and peptides of D. acutus and B. multicinctus will be helpful for the treatment of envenomation and drug discovery.


Author(s):  
Zubair A. Karim ◽  
Fadi T. Khasawneh

Platelets play an important role in thrombosis and hemostasis. Moreover, platelet dysfunction due to congenital and acquired etiologies is also one of the most common causes of bleeding encountered in clinical practice. Mostly, platelet function disorders are deficiencies of glycoprotein mediators of adhesion and aggregation, whereas defects of primary receptors for stimuli include those of the P2Y12 ADP receptor. Studies on inherited defects of (1) secretion for storage organelles (dense and alpha-granules), (2) the platelet cytoskeleton, and (3) the generation of pro-coagulant activity have allowed for the identification of genes directly and/or indirectly controlling specific functional responses. This chapter will review recent advances in the molecular characterization of platelet function defects, the spectrum of clinical manifestations of these disorders and their management.


Sign in / Sign up

Export Citation Format

Share Document