1121. Monitoring of the gas phase in the growth of silicon carbide crystals

Vacuum ◽  
1972 ◽  
Vol 22 (9) ◽  
pp. 432
Keyword(s):  
1996 ◽  
Vol 143 (5) ◽  
pp. 1654-1661 ◽  
Author(s):  
M. Ganz ◽  
N. Dorval ◽  
M. Lefebvre ◽  
M. Péalat ◽  
F. Loumagne ◽  
...  

1991 ◽  
Vol 250 ◽  
Author(s):  
Mark D. Allendorf ◽  
Carl F. Melius

AbstractEquilibrium calculations are reported for conditions typical of silicon carbide (SiC) deposition from mixtures of silane and hydrocarbons. Included are 34 molecules containing both silicon and carbon, allowing an assessment to be made of the importance of organosilicon species (and organosilicon radicals in particular) to the deposition process. The results are used to suggest strategies for improved operation of SiC CVD processes.


1999 ◽  
Vol 61-62 ◽  
pp. 176-178 ◽  
Author(s):  
A.N Vorob’ev ◽  
A.E Komissarov ◽  
A.S Segal ◽  
Yu.N Makarov ◽  
S.Yu Karpov ◽  
...  

Author(s):  
И.А. Ершов ◽  
Л.Д. Исхакова ◽  
В.И. Красовский ◽  
Ф.О. Милович ◽  
С.И. Расмагин ◽  
...  

The conditions of the laser-enhanced synthesis reaction of silicon carbide nanoparticles are determined and the nanoparticles are characterized. The gas-phase reaction of laser synthesis of SiC particles is observed at SiH4/C2H2 flow ratio in the range of 1.6-3.2. The temperature in the reaction zone was ~1400--1500ºC. Silicon carbide nanoparticles ~6 nm in diameter are produced and their composition is studied.


2017 ◽  
Vol 6 (7) ◽  
pp. P399-P404 ◽  
Author(s):  
Yuichi Funato ◽  
Noboru Sato ◽  
Yasuyuki Fukushima ◽  
Hidetoshi Sugiura ◽  
Takeshi Momose ◽  
...  

1991 ◽  
Vol 250 ◽  
Author(s):  
Stratis V. Sotirchos ◽  
George D. Papasouliotis

AbstractA kinetic model is presented for the deposition of silicon carbide through decomposition of methyltrichlorosilane (MTS). The developed model includes gas phase (homogeneous) reactions that lead to formation of deposition precursors and surface (heterogeneous) reactions that lead or can lead to deposition of silicon carbide, silicon, and carbon. The kinetic model is incorporated in a transport and reaction model for a tubular hot-wall reactor, and the overall reactor model is used to obtain some preliminary results on the effects of pressure and distance in the reactor on the rate of deposition and the composition of the deposit. The results show that the model can reproduce most of the experimental observations of the literature.


Sign in / Sign up

Export Citation Format

Share Document