Kinetic Modelling of the Deposition of SiC from Methyltrichlorosilane

1991 ◽  
Vol 250 ◽  
Author(s):  
Stratis V. Sotirchos ◽  
George D. Papasouliotis

AbstractA kinetic model is presented for the deposition of silicon carbide through decomposition of methyltrichlorosilane (MTS). The developed model includes gas phase (homogeneous) reactions that lead to formation of deposition precursors and surface (heterogeneous) reactions that lead or can lead to deposition of silicon carbide, silicon, and carbon. The kinetic model is incorporated in a transport and reaction model for a tubular hot-wall reactor, and the overall reactor model is used to obtain some preliminary results on the effects of pressure and distance in the reactor on the rate of deposition and the composition of the deposit. The results show that the model can reproduce most of the experimental observations of the literature.

1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 955
Author(s):  
Alamir Elsayed ◽  
Mohamed El-Beltagy ◽  
Amnah Al-Juhani ◽  
Shorooq Al-Qahtani

The point kinetic model is a system of differential equations that enables analysis of reactor dynamics without the need to solve coupled space-time system of partial differential equations (PDEs). The random variations, especially during the startup and shutdown, may become severe and hence should be accounted for in the reactor model. There are two well-known stochastic models for the point reactor that can be used to estimate the mean and variance of the neutron and precursor populations. In this paper, we reintroduce a new stochastic model for the point reactor, which we named the Langevin point kinetic model (LPK). The new LPK model combines the advantages, accuracy, and efficiency of the available models. The derivation of the LPK model is outlined in detail, and many test cases are analyzed to investigate the new model compared with the results in the literature.


1996 ◽  
Vol 143 (5) ◽  
pp. 1654-1661 ◽  
Author(s):  
M. Ganz ◽  
N. Dorval ◽  
M. Lefebvre ◽  
M. Péalat ◽  
F. Loumagne ◽  
...  

1991 ◽  
Vol 250 ◽  
Author(s):  
Mark D. Allendorf ◽  
Carl F. Melius

AbstractEquilibrium calculations are reported for conditions typical of silicon carbide (SiC) deposition from mixtures of silane and hydrocarbons. Included are 34 molecules containing both silicon and carbon, allowing an assessment to be made of the importance of organosilicon species (and organosilicon radicals in particular) to the deposition process. The results are used to suggest strategies for improved operation of SiC CVD processes.


1999 ◽  
Vol 61-62 ◽  
pp. 176-178 ◽  
Author(s):  
A.N Vorob’ev ◽  
A.E Komissarov ◽  
A.S Segal ◽  
Yu.N Makarov ◽  
S.Yu Karpov ◽  
...  

Author(s):  
И.А. Ершов ◽  
Л.Д. Исхакова ◽  
В.И. Красовский ◽  
Ф.О. Милович ◽  
С.И. Расмагин ◽  
...  

The conditions of the laser-enhanced synthesis reaction of silicon carbide nanoparticles are determined and the nanoparticles are characterized. The gas-phase reaction of laser synthesis of SiC particles is observed at SiH4/C2H2 flow ratio in the range of 1.6-3.2. The temperature in the reaction zone was ~1400--1500ºC. Silicon carbide nanoparticles ~6 nm in diameter are produced and their composition is studied.


Sign in / Sign up

Export Citation Format

Share Document