scholarly journals 1449. A simple method of calculating the effectiveness of high temperature radiation heat shields

Vacuum ◽  
1974 ◽  
Vol 24 (9) ◽  
pp. 417
2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000046-000050
Author(s):  
R. Bannatyne ◽  
D. Gifford ◽  
K. Klein ◽  
C. Merritt

Abstract VORAGO Technologies has developed a pair of ARM Cortex M0 MCUs designed from the ground up to be high temperature capable. One of these devices is specifically developed for high temperature applications, the other adds capabilities that make it suitable for use in high radiation environments as well. These devices are fabricated using a modified version of commercial bulk 130nm CMOS technology utilizing our HARDSIL® technology, which provides immunity to the increased effects of latchup and EOS encountered at higher application temperatures. In addition to the processor these devices include features more typical of low temperature SoCs including on-chip memory, timers, and communications peripherals. In addition to the ceramic package and die format typically utilized at high temperature, a new lower-cost plastic package is available that has been characterized at higher temperatures. These devices have been characterized at temperatures up to 200C and results showing the latchup behavior and device performance are provided. Some of the tradeoffs involved in creating such devices are discussed, as well as some of the similarities and tradeoffs in creating a radiation hardened devices vs. a high temperature device.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000312-000317 ◽  
Author(s):  
Mohammed Ehteshamuddin ◽  
Jebreel M. Salem ◽  
Dong Sam Ha

Abstract The decline of easily accessible reserves pushes the oil and gas industry to drill deeper to explore previously untapped wells. Temperatures in these wells can exceed 210 °C. Cooling and conventional heat extraction techniques are impractical in such a harsh environment. Reliable electronic designs that can sustain high temperature become necessary. This paper presents RF and IF microstrip combline band-pass filters for downhole communications, which can reliably operate up to 250 °C. Both filters are prototyped on a Rogers RO4003C substrate. Measured results at 250 °C show that the RF and IF filters have insertion losses of 4.53 dB and 3.45 dB, respectively. Both filters have stable performance at high temperatures. The maximum insertion loss variation with temperature for the RF filter is 1.88 dB, and bandwidth variation is 1.3 MHz. The maximum insertion loss variation with temperature for the IF filter is 1.48 dB, and bandwidth variation is 0.4 MHz. Return loss for the RF filter is more than 12 dB, and for the IF filter more than 10 dB in the passband. This paper also describes a simple method to find spacing between coupled symmetrical microstrip lines of a combline filter.


2017 ◽  
Vol 46 (7) ◽  
pp. 704001
Author(s):  
蔡红华 Cai Honghua ◽  
聂万胜 Nie Wansheng ◽  
吴 睿 Wu Rui ◽  
苏凌宇 Su Lingyu ◽  
侯志勇 Hou Zhiyong

1991 ◽  
Author(s):  
J. HAMILTON ◽  
N. YANG ◽  
W. CLIFT ◽  
D. BOEHME ◽  
K. MCCARTY

1967 ◽  
Vol 7 (5) ◽  
pp. 541-545 ◽  
Author(s):  
B. P. Kozyrev ◽  
Yu. K. Gornostaev

Sign in / Sign up

Export Citation Format

Share Document