Thin-film thermocouple gauge

Vacuum ◽  
1989 ◽  
Vol 39 (5) ◽  
pp. 490
1997 ◽  
Vol 503 ◽  
Author(s):  
Yongxia Zhang ◽  
Yanwei Zhang ◽  
Juliana Blaser ◽  
T. S. Sriiram ◽  
R. B. Marcus

ABSTRACTA thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an Atomic Force Microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. The thermal response over the range 25–s 4.5–rovolts per degree C and is linear.


2002 ◽  
Vol 408 (1-2) ◽  
pp. 270-274 ◽  
Author(s):  
Helin Zou ◽  
D.M. Rowe ◽  
S.G.K. Williams

AIP Advances ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 115025 ◽  
Author(s):  
Yantao Liu ◽  
Wei Ren ◽  
Peng Shi ◽  
Dan Liu ◽  
Ming Liu ◽  
...  

2009 ◽  
Vol 69-70 ◽  
pp. 515-519 ◽  
Author(s):  
Yun Xian Cui ◽  
Bao Yuan Sun ◽  
W.Y. Ding ◽  
F.D. Sun

In the paper, a new multilayer composition thin film thermocouple was developed, which can accurately measure the temperature nearby cutting edge in convenient and fast ways. By means of advanced Twinned microwave ECR plasma source enhanced Radio Frequency (RF) reaction non-balance magnetron sputtering technique, SiO2 insulating film, NiCr/NiSi sensor film and SiO2 protecting film were deposited on the surface HSS substrate. Both static calibration and dynamic calibration were completed. The results showed that the sensor had good performance, good linearity, quick dynamic response, response time constant was 12.7ms. The temperature near the cutting edge in cutting process of aluminum alloy was measured by the developed sensor. The bonding strength between multiple layer film and substrate of high-speed-steel met the presupposed demands.


2020 ◽  
Vol 20 (12) ◽  
pp. 6287-6294
Author(s):  
Jiong Ding ◽  
Jiayin Wang ◽  
Qiyue Xu ◽  
Suijun Yang ◽  
Shuliang Ye

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1289 ◽  
Author(s):  
Jinjun Deng ◽  
Linwei Zhang ◽  
Liuan Hui ◽  
Xinhang Jin ◽  
Binghe Ma

Indium tin oxide (ITO) thin-film thermocouples monitor the temperature of hot section components in gas turbines. As an in situ measuring technology, the main challenge of a thin-film thermocouple is its installation on complex geometric surfaces. In this study, an ITO thin-film thermocouple probe based on a sapphire microrod was used to access narrow areas. The performance of the probe, i.e., the thermoelectricity and stability, was analyzed. This novel sensor resolves the installation difficulties of thin-film devices.


2011 ◽  
Vol 189-193 ◽  
pp. 3170-3174
Author(s):  
Qi Yong Zeng ◽  
Xiao Feng Zheng ◽  
Gao Hui Zhang ◽  
Le Chen

Temperature plays a vital role in the machining industry today. NiCr/NiSi thin-film thermocouples have been deposited on the rake face of polycrystalline cubic boron nitride (PCBN) tools by magnetron sputtering. The typical deposition conditions are summarized. Static and dynamic calibrations of the NiCr/NiSi thin-film thermocouples are presented. The Seebeck coefficient of the TFTC is 37.3 μV/°C. The response time is about 3.9 ms. The testing results indicate that the developed NiCr/NiSi thin-film thermocouple sensors perform excellently when machining A3 steel in situ.


Sign in / Sign up

Export Citation Format

Share Document