The induction of antibody reactivity to endogenous viral glycoprotein in 15l5 × 72 [chf(+), V(+)] chickens

Virology ◽  
1980 ◽  
Vol 100 (2) ◽  
pp. 488-491 ◽  
Author(s):  
Stephen C. Marini ◽  
William S. Mason ◽  
James M. England ◽  
Michael S. Halpern
2003 ◽  
Vol 77 (13) ◽  
pp. 7539-7544 ◽  
Author(s):  
Ayato Takada ◽  
Heinz Feldmann ◽  
Thomas G. Ksiazek ◽  
Yoshihiro Kawaoka

ABSTRACT Most strains of Ebola virus cause a rapidly fatal hemorrhagic disease in humans, yet there are still no biologic explanations that adequately account for the extreme virulence of these emerging pathogens. Here we show that Ebola Zaire virus infection in humans induces antibodies that enhance viral infectivity. Plasma or serum from convalescing patients enhanced the infection of primate kidney cells by the Zaire virus, and this enhancement was mediated by antibodies to the viral glycoprotein and by complement component C1q. Our results suggest a novel mechanism of antibody-dependent enhancement of Ebola virus infection, one that would account for the dire outcome of Ebola outbreaks in human populations.


2021 ◽  
Vol 22 (2) ◽  
pp. 477
Author(s):  
Guendalina Froechlich ◽  
Chiara Gentile ◽  
Luigia Infante ◽  
Carmen Caiazza ◽  
Pasqualina Pagano ◽  
...  

Background: HER2-based retargeted viruses are in advanced phases of preclinical development of breast cancer models. Mesothelin (MSLN) is a cell-surface tumor antigen expressed in different subtypes of breast and non-breast cancer. Its recent identification as a marker of some triple-negative breast tumors renders it an attractive target, presently investigated in clinical trials employing antibody drug conjugates and CAR-T cells. The availability of MSLN-retargeted oncolytic viruses may complement the current immunotherapeutic panel of biological drugs against HER2-negative breast and non-breast tumors. Methods: A fully virulent, tumor-targeted oncolytic Herpes simplex virus-1 (MSLN-THV) with a selectivity for mesothelin-expressing cancer cells was generated. Recombineering technology was used to replace an essential moiety of the viral glycoprotein D with antibody fragments derived from clinically validated MSLN monoclonal antibodies, and to allow IL12 cargo expression in infected cells. Panels of breast and female reproductive system cell lines were used to verify the oncolytic potential of the viral constructs. A platform for production of the retargeted viruses was developed in HEK 293 cells, providing stable expression of a suitable chimeric receptor. Results: We demonstrated the selectivity of viral infection and cytotoxicity by MSLN-retargeted viruses in a panel of mesothelin-positive cancer cells, originating from breast and female reproductive system tumors. We also developed a second-generation oncolytic MSLN-THV, encoding IL12, to enhance the immunotherapeutic potential of the viral backbone. A non-tumor cell line expressing a chimeric MSLN/Nectin-1 receptor, de-sensitized from antiviral responses by genetic inactivation of the Stimulator of Interferon Genes (STING)-dependent pathway was engineered, to optimize viral yields. Conclusions: Our proof-of-concept study proposes MSLN-retargeted herpesviruses as potential cancer immunotherapeutics for assessments in preclinical models of MSLN-positive tumors, complementing the available panel of oncolytic viruses to HER2-negative breast tumors.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 904.1-904
Author(s):  
P. Vandormael ◽  
A. Pues ◽  
E. Sleurs ◽  
P. Verschueren ◽  
V. Somers

Background:Rheumatoid arthritis (RA) is an autoimmune disorder that is characterized by chronic inflammation of the joint synovium and presence of autoantibodies in most patients. For RA, many treatments are currently available but each treatment will only induce disease remission in a subset of patients. Moreover, finding out which patients respond well to first-line therapy with classical synthetic disease modifying anti-rheumatic drugs (csDMARDs), still largely depends on trial and error.Objectives:In this study, we aim to find novel RA autoantibody biomarkers that predict therapy response to csDMARDs before the initiation of treatment.Methods:In the CareRA trial, a Flemish multicenter study of different treatment regimes, serum samples were collected from RA patients that did or did not show disease remission (DAS28(CRP)<2.6) in response to csDMARDs, combined with a step down glucocorticoid treatment. In our study, baseline samples, collected before the start of treatment, were used to determine predictive antibody reactivity. A cDNA phage display library, representing the antigens from RA synovial tissue, was constructed and screened for antibody reactivity in baseline serum samples of RA patients that failed to reach remission at week 16. Using enzyme-linked immunosorbent assays (ELISA), antibody reactivity against the identified antigens was initially determined in pooled baseline serum samples of RA patients that did (n=50) or did not (n=40) reach disease remission at week 16. Antigenic targets that showed increased antibody reactivity in pools from patients that did not reach disease remission, were further validated in individual serum samples of 69 RA patients that did not reach DAS28(CRP) remission at week 16, and 122 RA patients that did.Results:Screening and validation of antibody reactivity resulted in 41 novel antigens. The retrieved antigenic sequences correspond to (parts of) known proteins and to randomly formed peptides. A panel of 3 of these peptide antigens could be composed, whose baseline antibody reactivity correlated with lack of therapy response at week 16. Presence of antibodies against at least one of these 3 antigens was significantly higher in individual samples of RA patients that did not reach DAS28(CRP) remission (43 vs. 29%, p=0.041), or that failed to reach ACR 70 (42 vs. 26%, p=0.029) response criteria at week 16, compared to RA patients that did reach these respective criteria. In addition, RA patients which were positive for this antibody panel at baseline, also showed less DAS(CRP) remission at week 4 and week 8.Conclusion:We have identified a set of 3 antibody biomarkers that can predict failure of early disease remission after first-line RA therapy, which might contribute to personalized medicine decisions.Disclosure of Interests:Patrick Vandormael: None declared, Astrid Pues: None declared, Ellen Sleurs: None declared, Patrick Verschueren Grant/research support from: Pfizer unrestricted chair of early RA research, Speakers bureau: various companies, Veerle Somers Grant/research support from: Research grant from Pfizer and BMS


1983 ◽  
Vol 258 (17) ◽  
pp. 10594-10598
Author(s):  
O Kämpe ◽  
D Bellgrau ◽  
U Hammerling ◽  
P Lind ◽  
S Pääbo ◽  
...  

2016 ◽  
Vol 136 (9) ◽  
pp. S206
Author(s):  
K. Kamiya ◽  
Y. Aoyama ◽  
J. Yamagami ◽  
O. Yamasaki ◽  
Y. Tokura ◽  
...  

Virology ◽  
1993 ◽  
Vol 195 (2) ◽  
pp. 541-549 ◽  
Author(s):  
Kinjiro Morimoto ◽  
Yasumasa Iwatani ◽  
Akihiko Kawai

1986 ◽  
Vol 103 (5) ◽  
pp. 1829-1835 ◽  
Author(s):  
P G Woodman ◽  
J M Edwardson

A cell-free assay has been developed for the delivery of influenza virus neuraminidase to the plasma membrane. Two types of postnuclear supernatant, which acted as donor and acceptor of the enzyme, were prepared from baby hamster kidney cells. Donor preparations were obtained from cells infected with influenza virus and containing neuraminidase en route to the plasma membrane. Acceptor preparations were obtained from cells containing, bound to their plasma membranes, Semliki Forest virus with envelope glycoproteins bearing [3H]N-acetylneuraminic acid. Fusion between vesicles from these two preparations permits access of the enzyme to its substrate, which results in the release of free [3H]N-acetylneuraminic acid. This release was detected through the transfer of radioactivity from a trichloroacetic acid-insoluble to a trichloroacetic acid-soluble fraction. An ATP-dependent component of release was found, which appears to be a consequence of vesicle fusion. This component was enhanced when the donor was prepared from cells in which the enzyme had been concentrated in a compartment between the Golgi complex and the plasma membrane, which indicates that a specific exocytic fusion event has been reconstituted. The extent of fusion is greatly reduced by pre-treatment of donor and acceptor preparations with trypsin, which points to the involvement of proteins in the fusion reaction.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1467
Author(s):  
K. Yeon Choi ◽  
Alistair McGregor

A vaccine against congenital cytomegalovirus infection is a high priority. Guinea pig cytomegalovirus (GPCMV) is the only congenital CMV small animal model. GPCMV encodes essential glycoprotein complexes for virus entry (gB, gH/gL/gO, gM/gN) including a pentamer complex (gH/gL/GP129/GP131/GP133 or PC) for endocytic cell entry. The cohorts for protection against congenital CMV are poorly defined. Neutralizing antibodies to the viral glycoprotein complexes are potentially more important than an immunodominant T-cell response to the pp65 protein. In GPCMV, GP83 (pp65 homolog) is an evasion factor, and the GP83 mutant GPCMV has increased sensitivity to type I interferon. Although GP83 induces a cell-mediated response, a GP83-only-based vaccine strategy has limited efficacy. GPCMV attenuation via GP83 null deletion mutant in glycoprotein PC positive or negative virus was evaluated as live-attenuated vaccine strains (GP83dPC+/PC-). Vaccinated animals induced antibodies to viral glycoprotein complexes, and PC+ vaccinated animals had sterilizing immunity against wtGPCMV challenge. In a pre-conception vaccine (GP83dPC+) study, dams challenged mid-2nd trimester with wtGPCMV had complete protection against congenital CMV infection without detectable virus in pups. An unvaccinated control group had 80% pup transmission rate. Overall, gB and PC antibodies are key for protection against congenital CMV infection, but a response to pp65 is not strictly necessary.


Sign in / Sign up

Export Citation Format

Share Document