Relationship of the raw water quality to mutagens detectable by the Ames Salmonella/microsome assay in a drinking-water supply

1981 ◽  
Vol 15 (9) ◽  
pp. 1037-1043 ◽  
Author(s):  
W GRABOW ◽  
P VANROSSUM ◽  
N GRABOW ◽  
R DENKHAUS
2019 ◽  
Vol 14 (No. 2) ◽  
pp. 76-83
Author(s):  
Jan Gregar ◽  
Jan Petrů ◽  
Jana Novotná

Švihov dam, the largest drinking water source in the Czech Republic and Central Europe, has problems with eutrophication. The Švihov dam catchment spreads over 1200 km<sup>2</sup> and supplies over 1.5 million people in the capital of Prague and the Central Bohemian region with drinking water. Due to intensive agricultural activities and a lack of wastewater treatment plants in small settlements, the water quality is deteriorating. As a result, corrective measures need to be taken. Technological Agency of the Czech Republic supported this research which proposes different scenarios for a reduction of water quality degradation in the dam. The Trnávka dam watershed was chosen for study purposes as it occupies one quarter of the Švihov dam watershed. Hydrological balance was established using measured data. Point and non-point sources of nutrients were determined by field research and included in a Soil and Water Assessment Tool (SWAT) model. This study aims to propose complex watershed management to improve the state of the environment in the entire area and to reduce eutrophication. Different management practices would reduce nutrient loads of streams and increase water quality which is the critical factor in dam eutrophication. This research brings methodology and systematic approach to integrated management, and can be applied not only for the Švihov dam, but also for other watersheds, including those which function as drinking water supply.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2653
Author(s):  
Minhaz Farid Ahmed ◽  
Mazlin Bin Mokhtar ◽  
Lubna Alam ◽  
Che Abd Rahim Mohamed ◽  
Goh Choo Ta

Prolonged persistence of toxic cadmium (Cd), chromium (Cr) and lead (Pb) in the aquatic environment are due to its nonbiodegradable characteristic. A few studies have reported higher concentrations of these metals in the transboundary Langat River, Malaysia. This study determined the spatial and temporal distributions of Cd, Cr and Pb concentrations (2005–2015) in the Langat River along with assessing the status of these metals in the drinking water supply chain at the basin. Water samples were collected once in 2015 from the drinking water supply chain, i.e., from the river, treated water at plants, taps and filtration water at households. Determined mean concentrations of Cd, Cr and Pb by inductively coupled plasma mass spectrometry in the Langat River were within the drinking water quality standard of Malaysia and the WHO, except for the Pb (9.99 ± 1.40 µg/L) concentration, which was at the maximum limit, 10 µg/L. The spatial and temporal distribution of these metals’ concentrations indicate dilution of it downstream, along with the increasing trend in rainfall and water flow, especially during the northeast monsoon. Significant correlation and regression analysis of the Cd, Cr and Pb concentrations also indicate that the sources of this metal pollution are mainly the natural weathering of minerals along with anthropogenic activities in the basin. The determined overall water quality of the Langat River is categorized Class IIA (i.e., clean), which requires conventional treatment before drinking; however, the maximum removal efficiency of these metals by the plants at the basin was about 90.17%. Therefore, the proactive leadership roles of the local authorities will be appropriate to reduce the pollution of this river as well as introducing a two-layer water filtration system at the Langat River Basin to accelerate the achievement of a sustainable drinking water supply.


2013 ◽  
Vol 13 (3) ◽  
pp. 835-845
Author(s):  
Fei Chen ◽  
William B. Anderson ◽  
Peter M. Huck

An integrated approach for the identification and assessment of the most critical chemical contaminant(s) at a drinking water intake has been developed. It involves the determination of a threshold or critical raw water concentration (CRWC) for target contaminants using the observed overall removal efficiency of a specific water treatment plant (WTP) and regulated drinking water concentrations for the target contaminants. The exceedance probability relative to the CRWC based on historical raw water quality monitoring data is then calculated. Finally, the integration of the raw water quality data and the overall efficiency of a particular WTP sequence allows for identification of the most critical contaminant(s) as well as an advance indication of which contaminants are most likely to challenge a plant. The proactive nature of this approach gives a utility the impetus and time to assess current treatment processes and potential alternatives. In addition, it was found that three- or four-parameter theoretical distributions are more appropriate than two-parameter probability distributions for the fitting of raw water quality data. This study reveals that the reliance on raw and/or treated water contaminant concentrations in isolation or on theoretical removals through treatment processes can, in some circumstances, be misguided.


2015 ◽  
Vol 31 (2) ◽  
pp. 134-144 ◽  
Author(s):  
Maria Magaly Heidenreich Silva Bucci ◽  
Francisco Eduardo da Fonseca Delgado ◽  
Luiz Fernando Cappa de Oliveira

2021 ◽  
Vol 4 (2) ◽  
pp. 155-159
Author(s):  
Olga A. Sakhnova ◽  
Irina I. Bochkareva

The article discusses the reform of the "Regulatory Guillotine", shows the main objectives of this reform. The participants of this process have been identified. The analysis of the cancelled and accepted acts at the present time is given. Changes in regulatory legal acts in the field of water quality and sources of drinking water supply are analyzed.


2019 ◽  
Vol 70 (11) ◽  
pp. 3971-3976
Author(s):  
Alice Iordache ◽  
Alexandru Woinaroschy

Drinking water supply is essential for public health, quality of life, sustainable development of economic activity, and environmental protection. In this context, it is important to ensure continuous improvement of all stages of processes to guarantee water quality and safety [1]. The main objectives of the study are: -development of an integrated method and probable risk analysis for a drinking water supply system; -risk assessment of contamination of raw water with nitrate [2].


Sign in / Sign up

Export Citation Format

Share Document