scholarly journals Evaluation of the SWAT model as an integrated management tool in the Švihov drinking water supply catchment

2019 ◽  
Vol 14 (No. 2) ◽  
pp. 76-83
Author(s):  
Jan Gregar ◽  
Jan Petrů ◽  
Jana Novotná

Švihov dam, the largest drinking water source in the Czech Republic and Central Europe, has problems with eutrophication. The Švihov dam catchment spreads over 1200 km<sup>2</sup> and supplies over 1.5 million people in the capital of Prague and the Central Bohemian region with drinking water. Due to intensive agricultural activities and a lack of wastewater treatment plants in small settlements, the water quality is deteriorating. As a result, corrective measures need to be taken. Technological Agency of the Czech Republic supported this research which proposes different scenarios for a reduction of water quality degradation in the dam. The Trnávka dam watershed was chosen for study purposes as it occupies one quarter of the Švihov dam watershed. Hydrological balance was established using measured data. Point and non-point sources of nutrients were determined by field research and included in a Soil and Water Assessment Tool (SWAT) model. This study aims to propose complex watershed management to improve the state of the environment in the entire area and to reduce eutrophication. Different management practices would reduce nutrient loads of streams and increase water quality which is the critical factor in dam eutrophication. This research brings methodology and systematic approach to integrated management, and can be applied not only for the Švihov dam, but also for other watersheds, including those which function as drinking water supply.

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2098
Author(s):  
Jan Kopp ◽  
Lucie Kureková ◽  
Pavlína Hejduková ◽  
David Vogt ◽  
Tomáš Hejduk

Repeatedly occurring droughts in the Czech Republic in previous years have heightened the need to answer questions concerning the provision of drinking water in small municipalities in the context of their development. The goal of the research was to assess what mutual relationships exist between insufficient drinking water supply and the socio-economic level of municipalities with less than 2000 inhabitants. The basis of the study is formed by data collected via a questionnaire survey of the mayors of 2110 municipalities. For the purposes of the analysis, the Drinking Water Supply Threat Index (DWSTI) composite indicator was established. Subsequently, the effect of selected factors on DWSTI was determined via correlation and regression analysis, and results were compared for two size groups of municipalities indicate water supply problems. The digging of new wells for individual needs is seen to be the most significant signal of problems. The absence of water supply infrastructure results in a heightening of the socio-economic deprivation of small municipalities, as it limits new building and becomes a limitation to their development. A solution is possible based on regional or trans-regional financial and managerial support of development together with an active approach on the part of municipalities.


Author(s):  
Filip Kotal ◽  
František Kožíšek ◽  
Hana Jeligová ◽  
Adam Vavrouš ◽  
Daniel Gari Wayessa ◽  
...  

The modern, risk-based approach requires that only those pollutants which are likely to be present in a given water supply should be monitored in drinking water. From this perspective, defining...


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2653
Author(s):  
Minhaz Farid Ahmed ◽  
Mazlin Bin Mokhtar ◽  
Lubna Alam ◽  
Che Abd Rahim Mohamed ◽  
Goh Choo Ta

Prolonged persistence of toxic cadmium (Cd), chromium (Cr) and lead (Pb) in the aquatic environment are due to its nonbiodegradable characteristic. A few studies have reported higher concentrations of these metals in the transboundary Langat River, Malaysia. This study determined the spatial and temporal distributions of Cd, Cr and Pb concentrations (2005–2015) in the Langat River along with assessing the status of these metals in the drinking water supply chain at the basin. Water samples were collected once in 2015 from the drinking water supply chain, i.e., from the river, treated water at plants, taps and filtration water at households. Determined mean concentrations of Cd, Cr and Pb by inductively coupled plasma mass spectrometry in the Langat River were within the drinking water quality standard of Malaysia and the WHO, except for the Pb (9.99 ± 1.40 µg/L) concentration, which was at the maximum limit, 10 µg/L. The spatial and temporal distribution of these metals’ concentrations indicate dilution of it downstream, along with the increasing trend in rainfall and water flow, especially during the northeast monsoon. Significant correlation and regression analysis of the Cd, Cr and Pb concentrations also indicate that the sources of this metal pollution are mainly the natural weathering of minerals along with anthropogenic activities in the basin. The determined overall water quality of the Langat River is categorized Class IIA (i.e., clean), which requires conventional treatment before drinking; however, the maximum removal efficiency of these metals by the plants at the basin was about 90.17%. Therefore, the proactive leadership roles of the local authorities will be appropriate to reduce the pollution of this river as well as introducing a two-layer water filtration system at the Langat River Basin to accelerate the achievement of a sustainable drinking water supply.


2015 ◽  
Vol 31 (2) ◽  
pp. 134-144 ◽  
Author(s):  
Maria Magaly Heidenreich Silva Bucci ◽  
Francisco Eduardo da Fonseca Delgado ◽  
Luiz Fernando Cappa de Oliveira

Water Policy ◽  
2016 ◽  
Vol 18 (4) ◽  
pp. 1015-1032 ◽  
Author(s):  
James L. Wescoat ◽  
Sarah Fletcher ◽  
Marianna Novellino

National drinking water programs seek to address monitoring challenges that include self-reporting, data sampling, data consistency and quality, and sufficient frequency to assess the sustainability of water systems. India stands out for its comprehensive rural water database known as Integrated Management Information System (IMIS), which conducts annual monitoring of drinking water coverage, water quality, and related program components from the habitation level to the district, state, and national levels. The objective of this paper is to evaluate IMIS as a national rural water supply monitoring platform. This is important because IMIS is the official government database for rural water in India, and it is used to allocate resources and track the results of government policies. After putting India's IMIS database in an international context, the paper describes its detailed structure and content. It then illustrates the geographic patterns of water supply and water quality that IMIS can present, as well as data analysis issues that were identified. In particular, the fifth section of the paper identifies limitations on the use of state-level data for explanatory regression analysis. These limitations lead to recommendations for improving data analysis to support national rural water monitoring and evaluation, along with strategic approaches to data quality assurance, data access, and database functionality.


2021 ◽  
Vol 4 (2) ◽  
pp. 155-159
Author(s):  
Olga A. Sakhnova ◽  
Irina I. Bochkareva

The article discusses the reform of the "Regulatory Guillotine", shows the main objectives of this reform. The participants of this process have been identified. The analysis of the cancelled and accepted acts at the present time is given. Changes in regulatory legal acts in the field of water quality and sources of drinking water supply are analyzed.


2019 ◽  
Vol 70 (11) ◽  
pp. 3971-3976
Author(s):  
Alice Iordache ◽  
Alexandru Woinaroschy

Drinking water supply is essential for public health, quality of life, sustainable development of economic activity, and environmental protection. In this context, it is important to ensure continuous improvement of all stages of processes to guarantee water quality and safety [1]. The main objectives of the study are: -development of an integrated method and probable risk analysis for a drinking water supply system; -risk assessment of contamination of raw water with nitrate [2].


2020 ◽  
Vol 10 (2) ◽  
pp. 298-308
Author(s):  
Carlos I. Gonzalez ◽  
John Erickson ◽  
Karina A. Chavarría ◽  
Kara L. Nelson ◽  
Amador Goodridge

Abstract Safe water storage is critical to preserve water quality, especially when intermittent piped drinking water supply creates a need for household storage. This study characterized household storage practices and stored water quality in 94 households (N = 94) among four peri-urban neighborhoods in Arraiján, Panama with varying degrees of supply intermittency. We found that 18 (19.1%) households stored drinking water in unsafe containers. Forty-four (47%) samples of household stored drinking water had residual chlorine levels &lt;0.2 mg/L. While 33 (35.1%) samples were positive for total coliform bacteria, only 23 (24.4%) had &gt;10 most probable number (MPN)/100 mL total coliform bacteria. Eight (44%) samples were positive for Escherichia coli, whereas only one (1.3%) sample from the safe containers was positive. Twenty-nine (30.9%) samples had &gt;500 MPN/mL heterotrophic plate count bacteria. These findings suggest that longer supply interruptions were associated with longer storage times and lower chlorine residual, which were associated with higher concentrations of indicator bacteria. This is one of the first studies in the Central-American region to show an association between the lack of turnover (replacement with fresh water) and greater contamination during household water storage. Thus, when drinking water supply is not completely continuous and household storage is required, decreasing the time between supply periods can facilitate safer water storage. Public awareness and education are also recommended to increase hygiene practices during water collection and storage.


Sign in / Sign up

Export Citation Format

Share Document