The effects of particle size, organic matter content, crop residues and dissolved organic matter on the sorption kinetics of atrazine and isoproturon by clay soil

Chemosphere ◽  
1996 ◽  
Vol 32 (12) ◽  
pp. 2345-2358 ◽  
Author(s):  
Angus J. Beck ◽  
Kevin C. Jones
2018 ◽  
Vol 13 (No. 3) ◽  
pp. 140-149 ◽  
Author(s):  
Šimanský Vladimír ◽  
Lukáč Martin

Soil structure is a key determinant of many soil environmental processes and is essential for supporting terrestrial ecosystem productivity. Management of arable soils plays a significant role in forming and maintaining their structure. Between 1994 and 2011, we studied the influence of soil tillage and fertilisation regimes on the stability of soil structure of loamy Haplic Luvisol in a replicated long-term field experiment in the Dolná Malanta locality (Slovakia). Soil samples were repeatedly collected from plots exposed to the following treatments: conventional tillage (CT) and minimum tillage (MT) combined with conventional (NPK) and crop residue-enhanced fertilisation (CR+NPK). MT resulted in an increase of critical soil organic matter content (St) by 7% in comparison with CT. Addition of crop residues and NPK fertilisers significantly increased St values (by 7%) in comparison with NPK-only treatments. Soil tillage and fertilisation did not have any significant impact on other parameters of soil structure such as dry sieving mean weight diameters (MWD), mean weight diameter of water-stable aggregates (MWD<sub>WSA</sub>), vulnerability coefficient (Kv), stability index of water-stable aggregates (Sw), index of crusting (Ic), contents of water-stable macro- (WSA<sub>ma</sub>) and micro-aggregates (WSA<sub>mi</sub>). Ic was correlated with organic matter content in all combinations of treatments. Surprisingly, humus quality did not interact with soil management practices to affect soil structure parameters. Higher sums of base cations, CEC and base saturation (Bs) were linked to higher Sw values, however higher values of hydrolytic acidity (Ha) resulted in lower aggregate stability in CT treatments. Higher content of K<sup>+</sup> was responsible for higher values of MWD<sub>WSA </sub>and MWD in CT. In MT, contents of Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> were significantly correlated with contents of WSA<sub>mi </sub>and WSA<sub>ma</sub>. Higher contents of Na<sup>+</sup> negatively affected St values and positive correlations were detected between Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> and Ic in NPK treatments.


1991 ◽  
Vol 71 (3) ◽  
pp. 377-387 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
K. E. Bowren ◽  
L. Townley-Smith ◽  
M. Schnitzer

The effects of crop rotation and various cultural practices on soil organic matter and some biochemical characteristics of a heavy-textured, Orthic Black Chernozem with a thick A horizon were determined after 31 yr at Melfort, Saskatchewan. Treatments investigated included: fertilization, cropping frequency, green manuring, and inclusion of grass-legume hay crops in predominantly spring wheat (Triticum aestivum L.) systems. The results showed that neither soil organic C nor N in the top 15 cm of soil, nor hydrolyzable amino acids, nor C mineralized in 14 d at 20 °C were influenced by fertilization. However, the relative molar distribution (RMD) of the amino acids reflected the influence of fertilization and the phase (Rot-yr) of the legume green manure rotation sampled. Some characteristics assessed increased marginally with increasing cropping frequency but differences were less marked than results obtained earlier in a heavy-textured Black Chernozem with a thin A horizon at Indian Head, Saskatchewan. The relationship between soil organic matter or C mineralization versus estimated crop residues, residue C, or residue N returned to the land over the 31-yr period, were not significant in the Melfort soil. This contrasts with our findings for the thin Black soil. We speculate that the lack of soil organic matter response in the Melfort soil was due to its very high organic matter content (about 64 t ha−1C and 6.5 t ha−1N in the top 15 cm). We also hypothesized that the amino acid RMD results, which differed from most of those reported in the literature, may be reflecting the more recent cropping history of the soil. This aspect requires further research into the composition and distribution of the humic materials in this soil. Key words: Amino acids, relative molar distribution, C respiration, green manures, fertilization


2020 ◽  
Author(s):  
Cristina Contreras ◽  
Sara Acevedo ◽  
Sofía Martínez ◽  
Carlos Bonilla

&lt;p&gt;Typical information in soil databases is the soil texture and particle size distribution. These properties are used for soil description or predicting other soil properties such as bulk density or hydraulic conductivity. Measuring particle size distribution with standards methods such as the pipette or hydrometer is time-consuming because of the sample pre-treatment used to remove organic matter or iron and the sample post-treatment. Nowadays, there are new methodologies for determining soil particle size distribution, such as the Integral Suspension Pressure (ISP) method, which measures the silt content in a semi-automatized process. Thus, the main objective of this study was to evaluate the suitability of the ISP method compared to standard techniques used in soil analysis and evaluate the effect of organic matter content in the ISP measurements. The main results showed that the ISP method is equivalent in accuracy to the pipette, especially for soils rich in silt or sand content. Also, the results demonstrate the convenience of removing the soil organic matter when using the ISP for soils with more than 1.5% organic matter.&lt;/p&gt;


2020 ◽  
Author(s):  
Liang Wei

&lt;p&gt;The biogeochemical interfaces are hotspots for organic matter (OM) transformation. However, direct and continuouxiacis tracing of OM transformations and N and P degradation processes are lacking due to the heterogeneous and opaque nature of soil microenvironment. To investigate these processes, a new soil microarray technology (SoilChips) was developed and used. Homogeneous 2-mm-diameter SoilChips were constructed by depositing a dispersed paddy soils with high and low soil organic carbon (SOC) content. A horizon suspension on a patterned glass. Dissolved organic matter from the original soil was added on the SoilChips to mimic biogeochemical processes on interfaces. The chemical composition of biogeochemical interfaces were evaluated via X-ray photoelectron spectroscopy (XPS) and the two-dimensional distribution of enzyme activities in SoilChips were evaluated by zymography. Over 30 days, soil with high SOC content increases microbial nutrition (N and P) requirements than soil with low SOC evidenced by higher hotspots of &amp;#946;-1,4-N-acetaminophen glucosidase, and acid phosphomonoesterases and higher 16S rRNA gene copies. The degree of humification in dissolved organic matter (DOM) was higher and the bioavailability of DOM was poorer in soil with high SOC than soil with low SOC. The poorest bioavailability of DOM was detected at the end of incubation in soil with high SOC. Molecular modeling of OM composition showed that low SOC mainly facilitated the microbial production of glucans but high SOC mainly facilitated the microbial production of proteins. We demonstrated that SOC content or DOM availability for microorganisms modifies the specific OM molecular processing and N and P degradation processes, thereby providing a direct insight into biogeochemical transformation of OM at micro-scale.&lt;/p&gt;


1982 ◽  
Vol 62 (4) ◽  
pp. 631-639 ◽  
Author(s):  
G. T. PATTERSON ◽  
G. J. WALL

Replicate soil samples (2–20) from the A, B and C horizons of 41 pedons were collected to measure within-pedon variability of particle size distribution, organic matter content, calcium carbonate equivalent and pH. Variability in soil properties was examined in relation to the mode of origin of the soil material, soil horizonation and soil drainage. Variance in particle size distribution was significantly influenced by mode of deposition as well as by soil horizons, while soil drainage had no significant influence on the variation in particle size distribution. Variance in calcium carbonate equivalent and organic matter content was not influenced by soil drainage or mode of deposition. The number of replicate samples required for statistically reliable evaluation of a pedon at given confidence limits was determined for the soil properties studied. The results of these calculations indicate the need for up to five replicate samples to achieve satisfactory levels of accuracy at the 95% confidence level for some of the soil properties studied.


2020 ◽  
Vol 8 (05) ◽  
pp. 342-354
Author(s):  
Pengqiang Yang ◽  
Huanghe ◽  
Rujun Gao

Taking different types of sediments as the research object, this research studied the adsorption and release characteristics of phosphorus under different conditions of different temperatures, coexisting heavy metal ion system, organic matter content and sediment particle size. Through used correlation analysis and principal component analysis, it discussed the influence of various factors on the adsorption and release of phosphorus in sediments. The results show that the adsorption of phosphorus by five different types of sediments from different sources reached saturation equilibrium in about 10 hours, and the increasing rates of 0 ℃, 15 ℃ and 30 ℃ are 17.5% ~ 23.7% and 18.2% ~ 38.3%, respectively.  The addition of coexisting heavy metal ion solution accelerated the adsorption of phosphorus in the sediment and reduced the total amount of phosphorus adsorption, that is, heavy metal ions inhibited the adsorption of phosphorus in the sediment; the presence of organic matter in the sediment would reduce its adsorption of phosphorus , Taihu farm and wetland sampling points have the largest sediment organic matter content. Compared with the other three points, the adsorption of phosphorus of these two  points accounted for 20.6% and 22.1%; the adsorption and release of phosphorus by sediment increased with the decrease of particle size. The maximum release rate was 5.216mg/kg-1·h-1. The result of principal component analysis shows that the order of influence on the adsorption and release of phosphorus by sediments is temperature> disturbance> organic matter content> heavy metal ion influence> particle size of sediments.


1991 ◽  
Vol 23 (1-3) ◽  
pp. 447-454 ◽  
Author(s):  
H. M. Liljestrand ◽  
Y. D. Lee

The results of controlled batch experimental studies of the adsorption and desorption kinetics of dichlorobenzene to 1) size fractionated, washed sediments, 2) aggregate, washed sediment, 3) dissolved/colloidal sediment materials, and 4) bulk sediments,are used to determine the effect of inhomogeneous mixtures on the overall sorption rates. The size-segregated sediments are modeled as spherical particles with a porous outer shell of organic matter for sorption and an inert, inorganic core. The characteristic times of intraparticle diffusive transport are found to vary with particle size by about two orders of magnitude. The distribution of natural organic matter content with particle size results in sorption rates which differ greatly from that predicted by the monodisperse, homogeneous particle model. Coupled, reversible reactions between the solute and each solid size fraction are presented as a conceptual model for the interpretation of the empirical results of batch experiments.


2001 ◽  
Vol 1 (12) ◽  
pp. 1124-1126 ◽  
Author(s):  
Md. A. Alim . ◽  
M. M. Alam . ◽  
S. Khandker . ◽  
S. A. Ahmed . ◽  
Ahsanul Haque . ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document