The solution of nonhomogeneous thermal problems and the stefan single-phase problem in arbitrary domains

1980 ◽  
Vol 22 (2) ◽  
pp. 259-271 ◽  
Author(s):  
O.B. Kovaljov ◽  
N.A. Larkin ◽  
W.M. Fomin ◽  
N.N. Yanenko
Keyword(s):  
Author(s):  
Hafiz Muhammad Yasir Naeem ◽  
Aamer Iqbal Bhatti ◽  
Yasir Awais Butt ◽  
Qadeer Ahmed

Limited capacity and short life cycle of a battery are the major impediments in development of practical Electric Vehicles (EVs). Eco-driving is an optimization technique through which a velocity trajectory that consumes minimum energy is advised to the driver. However, presence of traffic signals to control large traffic network degrades the performance of eco-driving; as applying brakes to stop and then maximum re-acceleration to restart a trip consumes lot of energy. Eco-driving problem with multiple traffic signals and static model of battery has been proposed as Two Point Boundary Value Problem (TPBVP). TPBVP fails to solve multi-phase problem as a single phase due to discontinuity of the co-states at the junction, that is, start of a new phase. This paper investigates an optimal solution with both EV and battery dynamics in the presence of multiple traffic signals as Multi Point Boundary Value Problem (MPBVP) using multiple shooting technique. Traffic signals come at some intermediate points of a trip. MPBVP ensures continuity at the junction to solve the multi-phase problem as a single phase through inter dependencies between each phases. Goal of this work is not only to solve constrained eco-driving problem with traffic signals but also include charging and discharging limits on battery that indirectly improves battery’s life cycle. Results indicate that EV has crossed all the traffic signals during their green duration without applying brakes with also satisfying all the other constraints and continuity condition. Moreover, it can be seen that energy consumption using MPBVP is also marginally lesser as compared to TPBVP.


2017 ◽  
Vol 17 (8) ◽  
pp. 86-94
Author(s):  
N.Yu. Selivanova ◽  
M.V. Shamolin

A certain single-phase problem with free border is studied. The local solvability of such problem is proved. The more general method investigated earlier is used in concrete event in this work.


Author(s):  
Mina R. Mankbadi ◽  
S. Balachandar

We consider here the flow instability that evolves during the spontaneous release of a high pressure gas mixed with small solid particles in a spherical shock tube representing a detonative combustion. Upon the release of the particle-laden high pressure gas contained in the small sphere, a primary shock and a secondary shock are formed. Two material interfaces develop between the two shocks: one between the gas-gas, as in the classical single-phase problem. The second one is between the pure gas and the mixture of gas and solid particles. Because of the density discontinuity, Rayleigh-Taylor-type instabilities may develop for both surfaces, which are studied herein using a high-order numerical scheme. The interaction mechanisms involved can influence the instability and control the efficiency of the combustion process.


Author(s):  
S. Mahajan ◽  
M. R. Pinnel ◽  
J. E. Bennett

The microstructural changes in an Fe-Co-V alloy (composition by wt.%: 2.97 V, 48.70 Co, 47.34 Fe and balance impurities, such as C, P and Ni) resulting from different heat treatments have been evaluated by optical metallography and transmission electron microscopy. Results indicate that, on air cooling or quenching into iced-brine from the high temperature single phase ϒ (fcc) field, vanadium can be retained in a supersaturated solid solution (α2) which has bcc structure. For the range of cooling rates employed, a portion of the material appears to undergo the γ-α2 transformation massively and the remainder martensitically. Figure 1 shows dislocation topology in a region that may have transformed martensitically. Dislocations are homogeneously distributed throughout the matrix, and there is no evidence for cell formation. The majority of the dislocations project along the projections of <111> vectors onto the (111) plane, implying that they are predominantly of screw character.


Author(s):  
Edgar S. Etz ◽  
Thomas D. Schroeder ◽  
Winnie Wong-Ng

We are investigating by Raman microprobe measurements the superconducting and related phases in the LnBa2Cu3O7-x (for x=0 to 1) system where yttrium has been replaced by several of the lanthanide (Ln = Nd,Sm,Eu,Ho,Er) elements. The aim is to relate the observed optical spectra (Raman and fluorescence) to the compositional and structural properties of these solids as part of comprehensive materials characterization. The results are correlated with the methods of synthesis, the processing techniques of these materials, and their superconducting properties. Of relevance is the substitutional chemistry of these isostructural systems, the differences in the spectra, and their microanalytical usefulness for the detection of impurity phases, and the assessment of compositional homogeneity. The Raman spectra of most of these compounds are well understood from accounts in the literature.The materials examined here are mostly ceramic powders prepared by conventional solid state reaction techniques. The bulk samples are of nominally single-phase composition as determined by x-ray diffraction.


Author(s):  
L. A. Giannuzzi ◽  
A. S. Ramani ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

The δ phase is a Zn-rich intermetallic, having a composition range of ∼ 86.5 - 92.0 atomic percent Zn, and is stable up to 665°C. The stoichiometry of the δ phase has been reported as FeZn7 and FeZn10 The deviation in stoichiometry can be attributed to variations in alloy composition used by each investigator. The structure of the δ phase, as determined by powder x-ray diffraction, is hexagonal (P63mc or P63/mmc) with cell dimensions a = 1.28 nm, c = 5.76 nm, and 555±8 atoms per unit cell. Later work suggested that the layer produced by hot-dip galvanizing should be considered as two distinct phases which are characterized by their morphological differences, namely: the iron-rich region with a compact appearance (δk) and the zinc-rich region with a columnar or palisade microstructure (δp). The sub-division of the δ phase was also based on differences in diffusion behavior, and a concentration discontinuity across the δp/δk boundary. However, work utilizing Weisenberg photographs on δ single crystals reported that the variation in lattice parameters with composition was small and hence, structurally, the δk phase and the δp phase were the same and should be thought of as a single phase, δ. Bastin et al. determined the average cell dimensions to be a = 1.28 nm and c = 5.71 nm, and suggested that perhaps some kind of ordering process, which would not be observed by x-ray diffraction, may be responsible for the morphological differences within the δ phase.


Author(s):  
G. Mackiewicz Ludtka

Historically, metals exhibit superplasticity only while forming in a two-phase field because a two-phase microstructure helps ensure a fine, stable grain size. In the U-5.8 Nb alloy, superplastici ty exists for up to 2 h in the single phase field (γ1) at 670°C. This is above the equilibrium monotectoid temperature of 647°C. Utilizing dilatometry, the superplastic (SP) U-5.8 Nb alloy requires superheating to 658°C to initiate the α+γ2 → γ1 transformation at a heating rate of 1.5°C/s. Hence, the U-5.8 Nb alloy exhibits an anomolous superplastic behavior.


Sign in / Sign up

Export Citation Format

Share Document