Development of the Infrared Pyrometer with Fiber Optic for Measuring Cutting Temperature at High Speed Cutting

1991 ◽  
Vol 13 (3) ◽  
pp. 229
2004 ◽  
Vol 471-472 ◽  
pp. 162-166 ◽  
Author(s):  
Yi Wan ◽  
Zhi Tao Tang ◽  
Zhan Qiang Liu ◽  
Xing Ai

High-speed machining has received important interest because it leads to an increase of productivity and a better workpiece surface quality. However, the tool wear increases dramatically in high-speed machining (HSM) operations due to the high cutting temperature at the tool-workpiece interface and chip-tool interface. Cutting temperature and its gradient play an important role in tool life and machined part accuracy. This paper reviews different methods of the measurements of cutting temperature, which include: (1) thermocouples---tool-work thermocouple, embedded thermocouple, combination thermocouple and compensation thermocouple (2) optical infrared pyrometer, (3) infra-red photography, (4) thermal paints, (5) microstructure or microhardness observation. Each method has its advantages and limitations. The fundamental principles and application fields of each measurement method are presented, which is useful for the selection of the measurement methods for high-speed cutting temperature.


2013 ◽  
Vol 579-580 ◽  
pp. 202-207
Author(s):  
Guo He Li ◽  
Hou Jun Qi ◽  
Bing Yan

For the high speed cutting process of hardened 45 steel (45HRC), a finite element simulation of cutting deformation, cutting force and cutting temperature is finished with the large general finite element software ABAQUS. Through the building of geometry model, material model and heat conduction model, also the determination of boundary conditions, separation rule and friction condition, a thermal mechanical coupling finite element model of high speed cutting for hardened 45 steel is built. The serrated chip, cutting force and cutting temperature can be predicted. The comparison of experiment and simulation shows the validity of the model. The influence of cutting parameters on cutting process is investigated by the simulation under different cutting depthes and rake angles. The results show that as the increase of rake angle, the segment degree, cutting force and cutting temperature decrease. But the segment degree, also the cutting force and cutting temperature increase with the increase of cutting depth. This study is useful for the selection of cutting parameters of hardened steel.


2008 ◽  
Vol 2 (5) ◽  
pp. 348-353 ◽  
Author(s):  
Yoji Umezaki ◽  
◽  
Yasutsune Ariura ◽  
Toshio Suzuki ◽  
Ryohei Ishimaru ◽  
...  

The hobbing finish of hard gear teeth such as case-hardened gears is anticipated for practical use in high efficiency production. We studied wear and finished surface properties in cutting tests using a cubic boron nitride (cBN) hob cutter in high-speed cutting at 900 m/min of case-hardened steel. The cBN content in tip ingredients is related to wear, and tips high in cBN content are superior in wear resistance. The high thermal conductivity of cBN tips helps transfer cutting temperature heat to chips, melting and adhering them to the relief surface. Flaking may occur on the cutting edge but new chipping does not occur although chipping may exist after grinding. Finished surface roughness is influenced by horning on the cutting edge. Round horning leads to a smooth surface. High-speed finishing with cBN-tipped hobs is analyzed in view of cBN tip grinding and finished surface properties, in addition to wear properties.


2011 ◽  
Vol 117-119 ◽  
pp. 594-597 ◽  
Author(s):  
Mu Lan Wang ◽  
Yong Feng ◽  
Xiao Xia Li ◽  
Bao Sheng Wang

An experimental system used for temperature measurement is designed by the K-type thermocouple thermometry to achieve a direct measurement of cutting temperature in high speed orthogonal turning. The general regularity of temperature distribution is concluded, and the corresponding influences of cutting speed and cutting depth on the maximum temperature value are discussed in detail. Experimental data and simulating results are comparative analyzed to demonstrate the feasibility and correctness of Finite Element Method (FEM) model simulation and analytical solution. The verified model of temperature field can be applied to develop an effective non-contact soft-sensing method for high speed cutting temperature.


2009 ◽  
Vol 626-627 ◽  
pp. 105-110 ◽  
Author(s):  
Guo He Li ◽  
Min Jie Wang

A method was presented for calculating the temperature distribution of primary shear zone in orthogonal high speed cutting based on the non-uniform volume moving heat source. The temperature distribution of primary shear zone in orthogonal high speed cutting was calculated by the dynamic plastic constitutive relationship and the distribution of strain and strain rate of primary shear zone. The results show that the temperature distribution of primary shear zone is uneven, from the original plane to the cutoff plane, the cutting temperature increases continuously. In the middle of primary shear zone, the change of cutting temperature is larger, at the position near to original plant and cutoff plane, the change of cutting temperature is smaller. The cutting temperature increases with the increase of cutting speed and cutting depth, but decreases with the increase of rake angle. The comparison with existing method shows that the method presented in this paper is not only available, but also simple, convenient and more accord with the fact of orthogonal high speed cutting.


2011 ◽  
Vol 314-316 ◽  
pp. 1258-1261
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools parameters are determined by simulating the influences of cutting temperature, cutting force on the tools parameters using FEA.


2008 ◽  
Vol 569 ◽  
pp. 141-144
Author(s):  
Suk Hoon Shin ◽  
Chul Kim ◽  
Dong Gyu Ahn ◽  
Kwang Ho Kim ◽  
Myung Chang Kang

Ti-Al-Si-N and Ti-Al-N coatings were deposited on WC-Co substrates by a DC magnetron sputtering method. The oxidation behavior of two kinds of Ti0.75Al0.25N and Ti0.69Al0.23Si0.08N coatings were comparatively investigated by XRD patterns and GDOES depth profiles. Si addition of 8 at.% into Ti-Al-N film modified its microstructure to a fine composite comprising, Ti-Al-N crystallites and amorphous Si3N4, and to a smoother surface morphology. While the solid solution Ti0.75Al0.25N film had superior oxidation resistance up to around 700°C, the composite Ti-Al-Si-N film showed further enhanced oxidation resistance. Both Al2O3 and SiO2 layers played roles as a barrier against oxygen diffusion for the quaternary Ti-Al-Si-N film, whereas only the Al2O3 oxide layer formed at surface did a role for the Ti-Al-N film. The cutting performances of two coated carbide ball-end mills were evaluated by cutting of AISI D2 cold-worked die steel (60 HRC) under high-speed cutting condition. The tool wear and cutting temperature are discussed along with coating characteristics.


2004 ◽  
Vol 471-472 ◽  
pp. 238-242
Author(s):  
Bang Yan Ye ◽  
Jin Xu ◽  
Xiao Chu Liu ◽  
Yan Ming Quan

In this article, the micro-topography and texture characteristics of machined surface under the condition of high speed cutting are analyzed based on experimental observation. The forming process of machined surface and cause of the appearance are also discussed. The experimental results show that furrow and ridges, surface white layer and molten metal daub by the feed motion of cutting tool are found on machined surface due to the effect of high cutting temperature and rotating of workpiece in high speed turning process.


Sign in / Sign up

Export Citation Format

Share Document