scholarly journals The influence of methanol transport on the measured fracture toughness of poly(methyl methacrylate)

1987 ◽  
Vol 7 (5) ◽  
pp. 365-370
Author(s):  
L.C.A Yu ◽  
L Bevan
2007 ◽  
Vol 361-363 ◽  
pp. 491-494 ◽  
Author(s):  
Kyu Hyeon Lee ◽  
Yong Keun Lee ◽  
Bum Soon Lim ◽  
Sung Baek Cho ◽  
Sang Hoon Rhee

The poly(methyl methacrylate)/silica nano-composite made from trimethoxysilyl functionalized poly(methyl methacrylate) and dimethyl diethoxysilane was newly prepared and its apatite-forming ability and mechanical properties were evaluated comparing to poly(methyl methacrylate)/silica nano-composite made from trimethoxysilyl functionalized poly(methyl methacrylate) and tetraethyl orthosilicate. Its apatite-forming ability was similar to that of poly(methyl methacrylate)/silica nano-composite using tetraethyl orthosilicate but its fracture toughness was much improved. Its high fracture toughness might come from the less quantity of siloxane linkages in its structure because dimethyl diethoxysilane had only two ethoxysilane groups while tetraethyl orthosilicate had four ethoxysilane groups. From the results, it can be concluded that it has a possibility to be used as bioactive bone cement.


2021 ◽  
Vol 32 (3) ◽  
pp. 103-116
Author(s):  
Jamal Moammar Aldabib ◽  
◽  
Zainal Arifin Mohd Ishak ◽  

Hydroxyapatite (HA) has great potential as a reinforcing filler for poly (methyl methacrylate) (PMMA) denture base materials. Nevertheless, filler particles need to be homogeneously distributed throughout the PMMA particles to get the maximum benefit from using the filler. Therefore, the physical mixing of the powder components (PMMA and the filler) is strongly preferred to provide the required dispersion of the filler in the matrix. However, conventional techniques that have been tried, such as hand mixing and stirrer mixing techniques, were not effective. Therefore, the current study was designed to experimentally investigate the effect of different mixing times on the fracture toughness of PMMA/HA using a developed ball milling method. In this study, heat cured PMMA reinforced with 15 wt% HA ceramic powder was ground for different times (i.e., 10, 20, 30, and 40 min) via the technique of planetary ball milling (PBM). The ground powder mixtures were used for the fabrication of denture base testing samples. The particle size and distribution of the PMMA/HA composites after milling for several times were determined by the laser light scattering technique. The X-ray diffraction (XRD) patterns of the PMMA/HA composites were obtained. However, no new phase was observed. The effects of mixing time using the PBM technique on the fracture toughness were investigated. The effect of mixing time on the microporosity (voids) on the fractured surface of PMMA/HA was studied with field emission scanning electron microscopy (FESEM). Within the limitation of the current study, 30 min is considered the optimum mixing time for the tested PMMA/HA composite.


2018 ◽  
Vol 83 (1) ◽  
pp. 75-91 ◽  
Author(s):  
Fathie Kundie ◽  
Che Azhari ◽  
Zainal Ahmad

This research investigated the effects of alumina (Al2O3) micro- and nano-particles on poly(methyl methacrylate) (PMMA) denture base. Al2O3 was surface treated using (3-methacryloxypropyl)trimethoxysilane (?-MPS), added to methyl methacrylate (MMA), and mixed with PMMA powder. The filler volume fractions in the micro-composites were 0.5, 1, 2, 5 and 7 wt. %, whereas those in the nano-composites were 0.13, 0.25, 0.5, 1, 2 and 5 wt. %. The treated fillers were examined using Fourier transform infrared spectroscopy (FTIR). The influence of filler size and loading on mechanical properties was studied using fracture toughness and flexural tests. The thermal stability of the PMMA/Al2O3 composites was investigated using thermogravimetric analysis (TGA). In addition, the water absorption and solubility characteristic of the prepared composites was also investigated. The FTIR spectra showed new absorption bands, indicating the occurrence of surface modifications. Both micro- and nanoscale particles showed increased fracture toughness. The maximum value of 2.02 MPa?m1/2 was achieved with the addition of 0.5 wt. % nano-Al2O3, which accounts for a 39 % increase. In contrast to the flexural strength, the flexural modulus improved with increasing filler content. The micro-composites showed higher thermal stability than nano-composites. The water absorption and solubility of the prepared composites were slightly higher than those of the control. The use of low concentrations of Al2O3 nanoparticles may be of considerable interest in future studies to improve the mechanical properties of PMMA denture base.


2021 ◽  
pp. 37-45
Author(s):  
Jamal Moammar ALDABIB

In removable prosthodontics, poly(methyl methacrylate) (PMMA) is the most suitable for the construction of denture bases. Intra-orally, the subjected stress intensity during the function accelerate the fracture of acrylic resin denture bases. Extra-orally, fracture occurs when dentures are accidentally dropped on a hard surface. The aim of the current study was to investigate the effect of coupling agent concentration on the mechanical properties of Hydroxyapatite/Poly(methyl methacrylate) (HA/PMMA) denture base composite. The Hydroxyapatite (HA) treated with four different ratios (i.e. 0, 5, 7 and 10 wt%) of 3-(trimethoxysily) propyl methacrylate (γMPS) silane coupling agent was added into the PMMA matrix. The mechanical performance of the composite was evaluated by conducting fracture toughness, flexural and tensile tests. An improvement of 13.83% and 9.62% in the tensile and flexural strength respectively, was achieved. The tensile and flexural modulus of the composite increased by 19.04% and 12.5% respectively. A significant improvement of 29.26% in the fracture toughness was observed at 10 wt% of γ-MPS. 10 wt% of γ-MPS is the optimum amount of coupling agent for obtaining balanced mechanical properties.


2018 ◽  
Vol 10 (2) ◽  
pp. 113 ◽  
Author(s):  
Sahar Abdulrazzaq Naji ◽  
Marjan Behroozibakhsh ◽  
Tahereh Sadat Jafarzadeh Kashi ◽  
Hossein Eslami ◽  
Reza Masaeli ◽  
...  

Polymer ◽  
1995 ◽  
Vol 36 (20) ◽  
pp. 3975-3978 ◽  
Author(s):  
Sanboh Lee ◽  
T.M. Fu

Sign in / Sign up

Export Citation Format

Share Document