Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on lattice percolation and equivalent media theories

2018 ◽  
pp. 14-18
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

To simulate echoes from the earth’s surface in the low flight mode, it is necessary to reproduce reliably the delayed reflected sounding signal of the radar in real time. For this, it is necessary to be able to calculate accurately and quickly the dependence of the distance to the object being measured from the angular position of the line of sight of the radar station. Obviously, the simplest expressions for calculating the range can be obtained for a segment or a plane. In the text of the article, analytical expressions for the calculation of range for two-dimensional and three-dimensional cases are obtained. Methods of statistical physics, vector algebra, and the theory of the radar of extended objects were used. Since the calculation of the dependence of the range of the object to the target from the angular position of the line of sight is carried out on the analytical expressions found in the paper, the result obtained is accurate, and due to the relative simplicity of the expressions obtained, the calculation does not require much time.


2018 ◽  
Vol 63 (12) ◽  
pp. 1109 ◽  
Author(s):  
Kh. A. Gasanov ◽  
J. I. Guseinov ◽  
I. I. Abbasov ◽  
F. I. Mamedov ◽  
D. J. Askerov

The spatial and time dispersions of the dielectric permittivity of an electron gas in quasi-two-dimensional quantum nanostructures are studied. The screening of the charge-carrier scattering potential in a quantum-confined film with a modified P¨oschel–Teller potential is considered for the first time. Analytical expressions for the dielectric permittivity are obtained.


2015 ◽  
Vol 82 (8) ◽  
Author(s):  
Youxuan Zhao ◽  
Yanjun Qiu ◽  
Laurence J. Jacobs ◽  
Jianmin Qu

This paper develops micromechanics models to estimate the tensile and compressive elastic moduli of elastic solids containing randomly distributed two-dimensional microcracks. The crack faces are open under tension and closed under compression. When the crack faces are closed, they may slide against one another following the Coulomb's law of dry friction. The micromechanics models provide analytical expressions of the tensile and compressive moduli for both static and dynamic cases. It is found that the tensile and compressive moduli are different. Further, under dynamic loading, the compressive and tensile moduli are both frequency dependent. As a by-product, the micromechanics models also predict wave attenuation in the dynamic case. Numerical simulations using the finite element method (FEM) are conducted to validate the micromechanics models.


2000 ◽  
Vol 10 (06) ◽  
pp. 1437-1469 ◽  
Author(s):  
GIAN-ITALO BISCHI ◽  
CHRISTIAN MIRA ◽  
LAURA GARDINI

In this paper we show that unbounded chaotic trajectories are easily observed in the iteration of maps which are not defined everywhere, due to the presence of a denominator which vanishes in a zero-measure set. Through simple examples, obtained by the iteration of one-dimensional and two-dimensional maps with denominator, the basic mechanisms which are at the basis of the existence of unbounded chaotic trajectories are explained. Moreover, new kinds of contact bifurcations, which mark the transition from bounded to unbounded sets of attraction, are studied both through the examples and by general theoretical methods. Some of the maps studied in this paper have been obtained by a method based on the Schröoder functional equation, which allows one to write closed analytical expressions of the unbounded chaotic trajectories, in terms of elementary functions.


2005 ◽  
Vol 27 (4) ◽  
pp. 237-255 ◽  
Author(s):  
Jian-Yu Lu ◽  
Jiqi Cheng

A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.


2015 ◽  
Vol 11 (9) ◽  
pp. 47
Author(s):  
Feng Wu ◽  
Jiang Zhu ◽  
Yilong Tian ◽  
Zhipeng Xi

Network capacity has been widely studied in recent years. However, most of the literatures focus on the networks where nodes are distributed in a two-dimensional space. In this paper, we propose a 3D hybrid sensor network model. By setting different sensor node distribution probabilities for cells, we divide all the cells in the network into dense cells and sparse cells. Analytical expressions of the aggregate throughput capacity are obtained. We also find that suitable inhomogeneity can increase the network throughput capacity.


1976 ◽  
Vol 98 (2) ◽  
pp. 164-172 ◽  
Author(s):  
L. Mirandy ◽  
B. Paul

The stress field associated with a thin ellipsoidal cavity in an isotropic elastic medium with arbitrary tractions at distant boundaries is needed to generalize Griffith’s two-dimensional fracture criterion. Such a solution is given here. It is first formulated for a general ellipsoidal cavity having principal semiaxes a, b, and c, and then it is reduced to the specific case of a “flat” ellipsoid for which a and b are very much greater than c. An explicit solution of the general problem is possible but the results are somewhat unwieldy. The dominant terms of an asymptotic solution for small c/b, however, are shown to provide remarkably simple expressions for the stresses everywhere on the surface of the cavity. The applied normal stress parallel to the c axis and the shears lying in a plane perpendicular to it were found to produce surface stresses proportional to (b/c) × applied stress, with the amplification of other components of applied stress being negligible in comparison. Analytical expressions for the location and magnitude of the maximum surface stress are developed along with stress intensity factors for the elliptical crack (c = 0). Three dimensional effects due to ellipsoidal planform aspect ratio (b/a) and Poisson’s ratio are reported.


Sign in / Sign up

Export Citation Format

Share Document