Australian hot dry rock geothermal energy potential and a possible test site in the Hunter Valley

1996 ◽  
Vol 112 (13) ◽  
pp. 901-906 ◽  
Author(s):  
Michio KURIYAGAWA ◽  
Yoshiteru SATO ◽  
Norio TENMA ◽  
Tsutomu YAMAGUCHI

2021 ◽  
Vol 11 (6) ◽  
pp. 2691
Author(s):  
Nataša Ćuković Ignjatović ◽  
Ana Vranješ ◽  
Dušan Ignjatović ◽  
Dejan Milenić ◽  
Olivera Krunić

The study presented in this paper assessed the multidisciplinary approach of geothermal potential in the area of the most southeastern part of the Pannonian basin, focused on resources utilization. This study aims to present a method for the cascade use of geothermal energy as a source of thermal energy for space heating and cooling and as a resource for balneological purposes. Two particular sites were selected—one in a natural environment; the other within a small settlement. Geothermal resources come from different types of reservoirs having different temperatures and chemical compositions. At the first site, a geothermal spring with a temperature of 20.5 °C is considered for heat pump utilization, while at the second site, a geothermal well with a temperature of 54 °C is suitable for direct use. The calculated thermal power, which can be obtained from geothermal energy is in the range of 300 to 950 kW. The development concept was proposed with an architectural design to enable sustainable energy efficient development of wellness and spa/medical facilities that can be supported by local authorities. The resulting energy heating needs for different scenarios were 16–105 kW, which can be met in full by the use of geothermal energy.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 706
Author(s):  
Jacek Majorowicz ◽  
Stephen E. Grasby

We summarize the feasibility of using geothermal energy from the Western Canada Sedimentary Basin (WCSB) to support communities with populations >3000 people, including those in northeastern British Columbia, southwestern part of Northwest Territories (NWT), southern Saskatchewan, and southeastern Manitoba, along with previously studied communities in Alberta. The geothermal energy potential of the WCSB is largely determined by the basin’s geometry; the sediments start at 0 m thickness adjacent to the Canadian shield in the east and thicken to >6 km to the west, and over 3 km in the Williston sub-basin to the south. Direct heat use is most promising in the western and southern parts of the WCSB where sediment thickness exceeds 2–3 km. Geothermal potential is also dependent on the local geothermal gradient. Aquifers suitable for heating systems occur in western-northwestern Alberta, northeastern British Columbia, and southwestern Saskatchewan. Electrical power production is limited to the deepest parts of the WCSB, where aquifers >120 °C and fluid production rates >80 kg/s occur (southwestern Northwest Territories, northwestern Alberta, northeastern British Columbia, and southeastern Saskatchewan. For the western regions with the thickest sediments, the foreland basin east of the Rocky Mountains, estimates indicate that geothermal power up to 2 MWel. (electrical), and up to 10 times higher for heating in MWth. (thermal), are possible.


2014 ◽  
Vol 492 ◽  
pp. 583-585 ◽  
Author(s):  
An Dong Wang ◽  
Zhan Xue Sun ◽  
Bao Qun Hu ◽  
Jin Hui Liu ◽  
Cheng Dong Liu

In the past decades, the study on Hot Dry Rock (HDR) geothermal resource has been a hot topic. A large number of investigations confirm that electricity power generated from HDR is feasible and suggest that HDR geothermal source is a kind of local and renewable energy. Up no now, many countries have carried out HDR experiments. As a large energy consumption country, China will also develop HDR geothermal energy in the near future. In the present study, our preliminary data potentially suggest that Guangdong province have great potential to develop HDR geothermal applications.


2020 ◽  
Author(s):  
Hernando Enrique Rodriguez Pantano ◽  
Valentina Betancourt ◽  
Juan S. Solís-Chaves ◽  
C. M. Rocha-Osorio

Colombian geothermal potential for power generation is interesting due to the presence of the three Andean mountain ranges and the existence of active volcanoes in junction with springs and underground reservoirs with the consequent closeness of available hydrothermal water-wells. The Machin volcano is a small mountain placed in the middle of the country, that has a considerable geothermal potential with wells in a temperature range of 160 to 260C. For that reason, a techno-economic simulation for a Geothermal Energy Generation System is proposed in this paper, using for that the System Advisor Model software. The purpose of this research is to present a more encouraging picture for public and private investors interested in exploiting this energy potential in Colombia. Simulation results include technical and economic aspects as annual and monthly energy production, geothermal resource monthly average temperature, and the Time Of Delivery Factors are also considered. Some tables with system configuration, plant and pump costs, Capacity Factor, and real and nominal Levelized Cost of Energy are also shown.


Sign in / Sign up

Export Citation Format

Share Document