Numerical analysis of fast fracture and crack arrest in a sheet of elastic perfectly-plastic material

1984 ◽  
Vol 2 (3) ◽  
pp. 235-245 ◽  
Author(s):  
Z.G. Xu ◽  
H.K. Chung ◽  
J.D. Achenbach
1993 ◽  
Vol 60 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Castrenze Polizzotto

For a structure of elastic perfectly plastic material subjected to a given cyclic (mechanical and/or kinematical) load and to a steady (mechanical) load, the conditions are established in which plastic shakedown cannot occur whatever the steady load, and thus the structure is safe against the alternating plasticity collapse. Static and kinematic theorems, analogous to those of classical shakedown theory, are presented.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


2009 ◽  
Vol 44 (6) ◽  
pp. 407-416 ◽  
Author(s):  
P J Budden ◽  
Y Lei

Limit loads for a thick-walled cylinder with an internal or external fully circumferential surface crack under pure axial load are derived on the basis of the von Mises yield criterion. The solutions reproduce the existing thin-walled solution when the ratio between the cylinder wall thickness and the inside radius tends to zero. The solutions are compared with published finite element limit load results for an elastic–perfectly plastic material. The comparison shows that the theoretical solutions are conservative and very close to the finite element data.


2000 ◽  
Author(s):  
Bhavani V. Sankar ◽  
Manickam Narayanan ◽  
Abhinav Sharma

Abstract Nonlinear finite element analysis was used to simulate compression tests on sandwich composites containing debonded face sheets. The core was modeled as an elastic-perfectly-plastic material, and the face-sheet as elastic isotropic. The effects of core plasticity, face-sheet and core thickness, and debond length on the maximum load the beam can carry were studied. The results indicate that the core plasticity is an important factor that determines the maximum load.


2011 ◽  
Vol 172-174 ◽  
pp. 1066-1071 ◽  
Author(s):  
Hemantha Kumar Yeddu ◽  
John Ågren ◽  
Annika Borgenstam

Complex martensitic microstructure evolution in steels generates enormous curiosity among the materials scientists and especially among the Phase Field (PF) modeling enthusiasts. In the present work PF Microelasticity theory proposed by A.G. Khachaturyan coupled with plasticity is applied for modeling the Martensitic Transformation (MT) by using Finite Element Method (FEM). PF simulations in 3D are performed by considering different cases of MT occurring in a clamped system, i.e. simulation domain with fixed boundaries, of (a) pure elastic material with dilatation (b) pure elastic material without dilatation (c) elastic perfectly plastic material with dilatation having (i) isotropic as well as (ii) anisotropic elastic properties. As input data for the simulations the thermodynamic parameters corresponding to Fe - 0.3% C alloy as well as the physical parameters corresponding to steels acquired from experimental results are considered. The results indicate that elastic strain energy, dilatation and plasticity affect MT whereas anisotropy affects the microstructure.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
S. Shankar ◽  
M. M. Mayuram

An axisymmetrical hemispherical asperity in contact with a rigid flat is modeled for an elastic perfectly plastic material. The present analysis extends the work (sphere in contact with a flat plate) of Kogut–Etsion Model and Jackson–Green Model and addresses some aspects uncovered in the above models. This paper shows the critical values in the dimensionless interference ratios (ω∕ωc) for the evolution of the elastic core and the plastic region within the asperity for different Y∕E ratios. The present analysis also covers higher interference ratios, and the results are applied to show the difference in the calculation of real contact area for the entire surface with other existing models. The statistical model developed to calculate the real contact area and the contact load for the entire surfaces based on the finite element method (FEM) single asperity model with the elastic perfectly plastic assumption depends on the Y∕E ratio of the material.


Author(s):  
Hisashi Koike ◽  
Masaji Mori ◽  
Daisuke Fujiwara ◽  
Takashi Shimomura

The thimble tube, which is made of Zircaly-4, is one of the main components of a PWR fuel assembly. The thimble tube has an important role as a structural member of the skeleton. Another role of the thimble tube is to guide a rod cluster control assembly (RCCA) for insertion during the reactor operation, and the function has to be assured not only in normal operation but in a seismic event. In a horizontal seismic event, the fuel assembly vibrates laterally, which gives bending moment to the thimble tube. In addition, axial compressive force acts on the thimble tube in a vertical seismic event. The integrity of the thimble tube has to be maintained while this force and moment act. Mitsubishi has confirmed by the elastic stress analysis that the stress of the thimble tube is lower than the limit value requested for the seismic event. The stress evaluation method is based on the ASME code. The ASME code also describes the limit analysis which is available when the predicted stress is beyond elastic region of the material. In the analysis, the material is assumed to be elastic-perfectly plastic, and the maximum load that the structure can carry is calculated. For the reason mentioned above, the allowable limit of the thimble tube should be determined as a function between the force and the moment. We are planning to examine the allowable limit experimentally. As a step before testing, an analytical approach for the limit is discussed in this paper. Firstly, the allowable limit is calculated by a beam model assuming elastic-perfectly plastic material, based on the ASME code. Secondly, a 3D model analysis with elastic-plastic material is performed to predict the practical strength. Based on the comparison with the analysis using elastic-perfectly plastic material, ASME based limit is considerably conservative compared with the one with the actual stress-strain curve. Conversely, this means there is enough room to rationalize the allowable limit. As the future work, the experiment will be conducted to obtain the practical limit of the thimble tube and to verify the analysis results.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

In this paper the shakedown limit load is determined for a long radius 90-degree pipe bend using two different techniques. The first technique is a simplified technique which utilizes small displacement formulation and elastic-perfectly-plastic material model. The second technique is an iterative based technique which uses the same elastic-perfectly-plastic material model, but incorporates large displacement effects accounting for geometric non-linearity. Both techniques use the finite element method for analysis. The pipe bend is subjected to constant internal pressure magnitudes and cyclic bending moments. The cyclic bending loading includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending. The simplified technique determines the shakedown limit load (moment) without the need to perform full cyclic loading simulations or conventional iterative elastic techniques. Instead, the shakedown limit moment is determined by performing two analyses namely; an elastic analysis and an elastic-plastic analysis. By extracting the results of the two analyses, the shakedown limit moment is determined through the calculation of the residual stresses developed in the pipe bend. The iterative large displacement technique determines the shakedown limit moment in an iterative manner by performing a series of full elastic-plastic cyclic loading simulations. The shakedown limit moment output by the simplified technique (small displacement) is used by the iterative large displacement technique as an initial iterative value. The iterations proceed until an applied moment guarantees a structure developed residual stress, at load removal, equals or slightly less than the material yield strength. The shakedown limit moments output by both techniques are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes for the three loading patterns stated earlier. The maximum moment carrying capacity (limit moment) the pipe bend can withstand and the elastic limit are also determined and imposed on the shakedown diagram of the pipe bend. Comparison between the shakedown diagrams generated by the two techniques, for the three loading patterns, is presented.


Author(s):  
Marina Trajković-Milenković ◽  
Otto T Bruhns ◽  
Andrija Zorić

The main goal of this work is to test the possibility of a newly introduced constitutive law to model the behaviour of the isotropic elastic-perfectly plastic material which is exposed to large elastoplastic deformations. The proposed constitutive relation is based on the hypo-elastic relation and the inelastic INTERATOM model. The verification of the model is done by its implementation into the commercial software ABAQUS/Standard via the user subroutine UMAT. For that purpose, the large simple shear problem is studied where selected objective corotational rates, i.e. the logarithmic rate, the Jaumann rate and the Green-Naghdi rate, are individually implemented in the aforementioned constitutive relations. The obtained results are compared mutually and with the relevant literature. The proposed constitutive model is also used to test the behaviour of the part of a real engineering structure, i.e. a seismic isolator, in order to obtain the correct input data for further analysis of superstructure behaviour due to seismic excitation.


Sign in / Sign up

Export Citation Format

Share Document