The dependence of discrete movements on rhythmic movements: Simple RT during oscillatory tracking

1994 ◽  
Vol 13 (3-4) ◽  
pp. 473-493 ◽  
Author(s):  
Claire F. Michaels ◽  
Raoul M. Bongers
2019 ◽  
Vol 121 (2) ◽  
pp. 574-587 ◽  
Author(s):  
Zhaoran Zhang ◽  
Dagmar Sternad

This study examined how humans spontaneously merge a sequence of discrete actions into a rhythmic pattern, even when periodicity is not required. Two experiments used a virtual throwing task, in which subjects performed a long sequence of discrete throwing movements, aiming to hit a virtual target. In experiment 1, subjects performed the task for 11 sessions. Although there was no instruction to perform rhythmically, the variability of the interthrow intervals decreased to a level comparable to that of synchronizing with a metronome; furthermore, dwell times shortened or even disappeared with practice. Floquet multipliers and decreasing variability of the arm trajectories estimated in state space indicated an increasing degree of dynamic stability. Subjects who achieved a higher level of periodicity and stability also displayed higher accuracy in the throwing task. To directly test whether rhythmicity affected performance, experiment 2 disrupted the evolving continuity and periodicity by enforcing a pause between successive throws. This discrete group performed significantly worse and with higher variability in their arm trajectories than the self-paced group. These findings are discussed in the context of previous neuroimaging results showing that rhythmic movements involve significantly fewer cortical and subcortical activations than discrete movements and therefore may pose a computationally more parsimonious solution. Such emerging stable rhythms in neuromotor subsystems may serve as building blocks or dynamic primitives for complex actions. The tendency for humans to spontaneously fall into a rhythm in voluntary movements is consistent with the ubiquity of rhythms at all levels of the physiological system. NEW & NOTEWORTHY When performing a series of throws to hit a target, humans spontaneously merged successive actions into a continuous approximately periodic pattern. The degree of rhythmicity and stability correlated with hitting accuracy. Enforcing irregular pauses between throws to disrupt the rhythm deteriorated performance. Stable rhythmic patterns may simplify control of movement and serve as dynamic primitives for more complex actions. This observation reveals that biological systems tend to exhibit rhythmic behavior consistent with a plethora of physiological processes.


2009 ◽  
Vol 277 (1685) ◽  
pp. 1179-1184 ◽  
Author(s):  
Raoul Huys ◽  
Laure Fernandez ◽  
Reinoud J. Bootsma ◽  
Viktor K. Jirsa

It takes longer to accomplish difficult tasks than easy ones. In the context of motor behaviour, Fitts' famous law states that the time needed to successfully execute an aiming movement increases linearly with task difficulty. While Fitts' explicit formulation has met criticism, the relation between task difficulty and movement time is invariantly portrayed as continuous. Here, we demonstrate that Fitts' law is discontinuous in reciprocal aiming owing to a transition in operative motor control mechanisms with increasing task difficulty. In particular, rhythmic movements are implemented in easy tasks and discrete movements in difficult ones. How movement time increases with task difficulty differs in both movement types. It appears, therefore, that the human nervous system abruptly engages a different control mechanism when task difficulty increases.


2009 ◽  
Vol 21 (5) ◽  
pp. 1335-1370 ◽  
Author(s):  
Renaud Ronsse ◽  
Dagmar Sternad ◽  
Philippe Lefèvre

Current research on discrete and rhythmic movements differs in both experimental procedures and theory, despite the ubiquitous overlap between discrete and rhythmic components in everyday behaviors. Models of rhythmic movements usually use oscillatory systems mimicking central pattern generators (CPGs). In contrast, models of discrete movements often employ optimization principles, thereby reflecting the higher-level cortical resources involved in the generation of such movements. This letter proposes a unified model for the generation of both rhythmic and discrete movements. We show that a physiologically motivated model of a CPG can not only generate simple rhythmic movements with only a small set of parameters, but can also produce discrete movements if the CPG is fed with an exponentially decaying phasic input. We further show that a particular coupling between two of these units can reproduce main findings on in-phase and antiphase stability. Finally, we propose an integrated model of combined rhythmic and discrete movements for the two hands. These movement classes are sequentially addressed in this letter with increasing model complexity. The model variations are discussed in relation to the degree of recruitment of the higher-level cortical resources, necessary for such movements.


2010 ◽  
Vol 104 (1) ◽  
pp. 210-217 ◽  
Author(s):  
Syusaku Sasada ◽  
Toshiki Tazoe ◽  
Tsuyoshi Nakajima ◽  
E. Paul Zehr ◽  
Tomoyoshi Komiyama

The functional coupling of neural circuits between the upper and lower limbs involving rhythmic movements is of interest to both motor control research and rehabilitation science. This coupling can be detected by examining the effect of remote rhythmic limb movement on the modulation of reflex amplitude in stationary limbs. The present study investigated the extent to which rhythmic leg pedaling modulates the amplitude of an early latency (peak 30–70 ms) cutaneous reflex (ELCR) in the upper limb muscles. Thirteen neurologically intact volunteers performed leg pedaling (60 or 90 rpm) while simultaneously contracting their arm muscles isometrically. Control experiments included isolated isometric contractions and discrete movements of the leg. ELCRs were evoked by stimulation of the superficial radial nerve with a train of rectangular pulses (three pulses at 333 Hz, intensity 2.0- to 2.5-fold perceptual threshold). Reflex amplitudes were significantly increased in the flexor carpi radialis and posterior deltoid and significantly decreased in the biceps brachii muscles during leg pedaling compared with that during stationary isometric contraction of the lower leg muscles. This effect was also sensitive to cadence. No significant modulation was seen during the isometric contractions or discrete movements of the leg. Additionally, there was no phase-dependent modulation of the ELCR. These findings suggest that activation of the rhythm generating system of the legs affects the excitability of the early latency cutaneous reflex pathways in the upper limbs.


2017 ◽  
Vol 118 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Se-Woong Park ◽  
Hamal Marino ◽  
Steven K. Charles ◽  
Dagmar Sternad ◽  
Neville Hogan

Mounting evidence suggests that human motor control uses dynamic primitives, attractors of dynamic neuromechanical systems that require minimal central supervision. However, advantages for control may be offset by compromised versatility. Extending recent results showing that humans could not sustain discrete movements as duration decreased, this study tested whether smoothly rhythmic movements could be maintained as duration increased. Participants performed horizontal movements between two targets, paced by sounds with intervals that increased from 1 to 6 s by 200 ms per cycle and then decreased again. The instruction emphasized smooth rhythmic movements without interspersed dwell times. We hypothesized that 1) when oscillatory motions slow down, smoothness decreases; 2) slower oscillatory motions are executed as submovements or even discrete movements; and 3) the transition between smooth oscillations and submovements shows hysteresis. An alternative hypothesis was that 4) removing visual feedback restores smoothness, indicative of visually evoked corrections causing the irregularity. Results showed that humans could not perform slow and smooth oscillatory movements. Harmonicity decreased with longer intervals, and dwell times between cycles appeared and became prominent at slower speeds. Velocity profiles showed an increase with cycle duration of the number of overlapping submovements. There was weak evidence of hysteresis in the transition between these two types of movement. Eliminating vision had no effect, suggesting that intermittent visually evoked corrections did not underlie this phenomenon. These results show that it is hard for humans to execute smooth rhythmic motions very slowly. Instead, they “default” to another dynamic primitive and compose motion as a sequence of overlapping submovements. NEW & NOTEWORTHY Complementing a large body of prior work showing advantages of composing primitives to manage the complexity of motor control, this paper uncovers a limitation due to composition of behavior from dynamic primitives: while slower execution frequently makes a task easier, there is a limit and it is hard for humans to move very slowly. We suggest that this remarkable limitation is not due to inadequacies of muscle, nor to slow neural communication, but is a consequence of how the control of movement is organized.


2001 ◽  
Vol 15 (4) ◽  
pp. 256-274 ◽  
Author(s):  
Caterina Pesce ◽  
Rainer Bösel

Abstract In the present study we explored the focusing of visuospatial attention in subjects practicing and not practicing activities with high attentional demands. Similar to the studies of Castiello and Umiltà (e. g., 1990) , our experimental procedure was a variation of Posner's (1980) basic paradigm for exploring covert orienting of visuospatial attention. In a simple RT-task, a peripheral cue of varying size was presented unilaterally or bilaterally from a central fixation point and followed by a target at different stimulus-onset-asynchronies (SOAs). The target could occur validly inside the cue or invalidly outside the cue with varying spatial relation to its boundary. Event-related brain potentials (ERPs) and reaction times (RTs) were recorded to target stimuli under the different task conditions. RT and ERP findings showed converging aspects as well as dissociations. Electrophysiological results revealed an amplitude modulation of the ERPs in the early and late Nd time interval at both anterior and posterior scalp sites, which seems to be related to the effects of peripheral informative cues as well as to the attentional expertise. Results were: (1) shorter latency effects confirm the positive-going amplitude enhancement elicited by unilateral peripheral cues and strengthen the criticism against the neutrality of spatially nonpredictive peripheral cueing of all possible target locations which is often presumed in behavioral studies. (2) Longer latency effects show that subjects with attentional expertise modulate the distribution of the attentional resources in the visual space differently than nonexperienced subjects. Skilled practice may lead to minimizing attentional costs by automatizing the use of a span of attention that is adapted to the most frequent task demands and endogenously increases the allocation of resources to cope with less usual attending conditions.


2005 ◽  
Vol 93 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Jen-Tse Chen ◽  
Yung-Yang Lin ◽  
Din-E Shan ◽  
Zin-An Wu ◽  
Mark Hallett ◽  
...  

Transcranial magnetic stimulation (TMS) of the motor cortex can interrupt voluntary contralateral rhythmic limb movements. Using the method of “resetting index” (RI), our study investigated the TMS effect on different types of bimanual movements. Six normal subjects participated. For unimanual movement, each subject tapped either the right or left index finger at a comfortable rate. For bimanual movement, index fingers of both hands tapped in the same (in-phase) direction or in the opposite (antiphase) direction. TMS was applied to each hemisphere separately at various intensities from 0.5 to 1.5 times motor threshold (MT). TMS interruption of rhythm was quantified by RI. For the unimanual movements, TMS disrupted both contralateral and ipsilateral rhythmic hand movements, although the effect was much less in the ipsilateral hand. For the bimanual in-phase task, TMS could simultaneously reset the rhythmic movements of both hands, but the effect on the contralateral hand was less and the effect on the ipsilateral hand was more compared with the unimanual tasks. Similar effects were seen from right and left hemisphere stimulation. TMS had little effect on the bimanual antiphase task. The equal effect of right and left hemisphere stimulation indicates that neither motor cortex is dominant for simple bimanual in-phase movement. The smaller influence of contralateral stimulation and the greater effect of ipsilateral stimulation during bimanual in-phase movement compared with unimanual movement suggest hemispheric coupling. The antiphase movements were resistant to TMS disruption, and this suggests that control of rhythm differs in the 2 tasks. TMS produced a transient asynchrony of movements on the 2 sides, indicating that both motor cortices might be downstream of the clocking command or that the clocking is a consequence of the 2 hemispheres communicating equally with each other.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lise Hobeika ◽  
Matthieu Ghilain ◽  
Loris Schiaratura ◽  
Micheline Lesaffre ◽  
Dominique Huvent-Grelle ◽  
...  

AbstractAlthough music therapy may engender clinical benefits in patients with neurodegenerative disease, the impacts of social and musical factors of such activities on socio-emotional and motor engagements are poorly understood. To address this issue, non-verbal behaviors of 97 patients with or without major cognitive impairment (CI) were assessed when listening to music or a metronome in front of a musician who was present physically (live) or virtually (video). Socio-emotional engagement was quantified as emotional facial expression production and gaze direction. Motor engagement was quantified as overall body motion and the production of rhythmic movements. In both groups, positive facial expressions were more frequent and rhythmic motor activities lasted longer with music than with a metronome, and during a live performance rather than a video performance. Relative to patients without CI, patients with CI moved less with music, expressed fewer emotions, and spent less time looking at the musician in the video condition and in the metronome condition. The relative reductions in motor and socio-emotional engagements in patients with CI might be markers of disease progression. However, the presence of a live partner induces older adults to engage emotionally and physically in musical activities emphasizing the relevance of using live performance as motivational levers during music therapy.


Sign in / Sign up

Export Citation Format

Share Document