scholarly journals Role of MAP kinase in mesoderm induction and axial patterning during Xenopus development

1996 ◽  
Vol 12 (1) ◽  
pp. 14
Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1475-1486 ◽  
Author(s):  
C. LaBonne ◽  
B. Burke ◽  
M. Whitman

We have examined the role of MAP kinase during mesoderm induction and axial patterning in Xenopus embryos. MAP Kinase Phosphatase (MKP-1) was used to inactivate endogenous MAP kinase and was found to prevent the induction of early and late mesodermal markers by both FGF and activin. In whole embryos, MKP-1 was found to disrupt posterior axial patterning, generating a phenotype similar to that obtained with a dominant inhibitory FGF receptor. Overexpression of either constitutively active MAP kinase or constitutively active MAP kinase (MEK) was sufficient to induce Xbra expression, while only constitutively active MEK was able to significantly induce expression of muscle actin. When MAP kinase phosphorylation was used as a sensitive marker of FGF receptor activity in vivo, this activity was found to persist at a low and relatively uniform level throughout blastula stage embryos. The finding that a low level of MAP kinase phosphorylation exists in unstimulated animal caps and is absent in caps overexpressing a dominant inhibitory FGF receptor provides a basis for our previous observation that overexpression of this receptor inhibits activin induction. These results indicate that FGF-dependent MAP kinase activity plays a critical role in establishing the responsiveness of embryonic tissues to mesoderm inducers.


2009 ◽  
Vol 22 (2) ◽  
pp. 109-124 ◽  
Author(s):  
Zaher A. Radi ◽  
Rosemary A. Marusak ◽  
Dale L. Morris

Nature ◽  
1995 ◽  
Vol 376 (6535) ◽  
pp. 58-62 ◽  
Author(s):  
M. Umbhauer ◽  
C. J. Marshall ◽  
C. S. Mason ◽  
R. W. Old ◽  
J. C. Smith

2003 ◽  
Vol 60 (1) ◽  
pp. 309
Author(s):  
J.L. Browning ◽  
K.A. Young ◽  
L.A. Holcomb ◽  
D.H. Jones ◽  
P.B. Hicks
Keyword(s):  

2021 ◽  
Author(s):  
Hijam Nonibala ◽  
Braj Bansh Prasad Gupta

Abstract Transcription of arylalkylamine N-acetyltransferase 2 (aanat2) gene leads to formation of AANAT2 - the rate-limiting enzyme in melatonin synthesis pathway in photosensitive fish pineal organ. However, unlike in avian and mammalian pineal gland, there is practically no information on signal transduction pathway(s) involved in regulation of aanat2 gene transcription in the fish pineal organ. Therefore, we investigated the role of important molecular components of signalling via cAMP, cGMP, Ca2+ involving PKA, PKG, PKC, MeK and p38 MAP kinase as well as possible role of serine/threonine phosphatases, CREB and CBP using their specific inhibitors and/or activators in aanat2 gene transcription in the fish pineal organ maintained under in vitro culture-conditions. db-cAMP and db-cGMP stimulated the expression of aanat2 gene. db-cAMP- and cGMP-induced aanat2 gene expression was significantly reduced in the presence of H-89 (specific inhibitor of PKA), KT5823 (specific inhibitor of PKG), chelerythrine chloride (specific inhibitor of PKC), U0126 ethanolate (specific inhibitor of MeK) and SB 202190 monohydrochloride hydrate (specific inhibitor of p38 MAP kinase). Inhibitors of PP1 and PP2A significantly increased aanat2 gene expression as well as significantly reduced cAMP- and cGMP-induced gene transcription, while inhibitor of PP2B had no effect on aanat2 gene expression. Inhibitors of both CREB and CBP-CREB interaction completely blocked cAMP-induced aanat2 gene transcription. Based on these findings, we suggest that cAMP, cGMP and Ca2+ stimulate aanat2 gene transcription via PKA, PKG and PKC, respectively. Further, protein phosphatases and CBP-CREB-CRE pathway are actively involved in regulation of on aanat2 gene expression in the fish pineal organ.


1995 ◽  
Vol 15 (12) ◽  
pp. 6777-6784 ◽  
Author(s):  
C A Pickett ◽  
A Gutierrez-Hartmann

We have previously demonstrated that epidermal growth factor (EGF) produces activation of the rat prolactin (rPRL) promoter in GH4 neuroendocrine cells via a Ras-independent mechanism. This Ras independence of the EGF response appears to be cell rather than promoter specific. Oncogenic Ras also produces activation of the rPRL promoter when transfected into GH4 cells and requires the sequential activation of Raf kinase, mitogen-activated protein (MAP) kinase, and c-Ets-1/GHF-1 to mediate this response. In these studies, we have investigated the interaction between EGF and Ras in stimulating rPRL promoter activity and the role of Raf and MAP kinases in mediating the EGF response. We have also examined the role of several transcription factors and used various promoter mutants of the rPRL gene in order to better define the trans- and cis-acting components of the EGF response. EGF treatment of GH4 cells inhibits activation of the rPRL promoter produced by transfection of V12Ras from 24- to 4-fold in an EGF dose-dependent manner. This antagonistic effect of EGF and Ras is mutual in that transfection of V12Ras also blocks EGF-induced activation of the rPRL promoter in a Ras dose-dependent manner, from 5.5- to 1.6-fold. Transfection of a plasmid encoding the dominant-negative Raf C4 blocks Ras-induced activation by 66% but fails to inhibit EGF-mediated activation of the rPRL promoter. Similarly, transfection of a construct encoding an inhibitory form of MAP kinase decreases the Ras response by 50% but does not inhibit the EGF response. Previous studies have demonstrated that c-Ets-1 is necessary and that GHF-1 acts synergistically with c-Ets-1 in the Ras response of the rPRL promoter. In contrast, overexpression of neither c-Ets-1 nor GHF-1 enhanced EGF-mediated activation of the rPRL promoter, and dominant-negative forms of these transcription factors failed to inhibit the EGF response. Using 5' deletion and site-specific mutations, we have mapped the EGF response to two regions on the proximal rPRL promoter. One region maps between -255 and -212, near the Ras response element, and a second maps between -125 and -54. The latter region appears to involve footprint 2, a previously identified repressor site on the rPRL promoter. Neither footprint 1 nor 3, known GHF-1 binding sites, appears to be crucial to RGF-mediated rPRL promoter activation. The results of these studies indicate that in GH4 neuroendocrine cells, rPRL gene regulation by EGF is mediated by a signal transduction pathway that is separate and antagonistic to the Ras pathway. Hence, the functional role of the Ras/Raf/MAP kinase pathway in mediating transcriptional responses to EGF and other receptor tyrosine kinase may differ in highly specialized cell types.


Endocrinology ◽  
1997 ◽  
Vol 138 (8) ◽  
pp. 3103-3111 ◽  
Author(s):  
Masahide Ohmichi ◽  
Koji Koike ◽  
Akiko Kimura ◽  
Kanji Masuhara ◽  
Hiromasa Ikegami ◽  
...  

Abstract In this study, prostaglandin (PG) F2α was found to activate mitogen-activated protein (MAP) kinase and MAP kinase kinase (MEK) in cultured rat puerperal uterine myometrial cells. PGF2α stimulation also led to an increase in phosphorylation of raf-1, son of sevenless (SOS), and Shc. Furthermore, we examined the mechanism by which PGF2α induced MAP kinase phosphorylation. Both pertussis toxin (10 ng/ml), which inactivates Gi/Go proteins, and expression of a peptide derived from the carboxyl terminus of the β-adrenergic receptor kinase 1 (βARK1), which specifically blocks signaling mediated by the βγ subunits of G proteins, blocked the PGF2α-induced activation of MAP kinase. Ritodrine (1 μm), which is known to relax uterine muscle contraction, attenuated PGF2α-induced tyrosine phosphorylation of MAP kinase. Moreover, to examine the role of MAP kinase pathway in uterine contraction, an inhibitor of MEK activity, PD098059, was used. Although MEK inhibitor had no effect on PGF2α-induced calcium mobilization, this inhibitor partially inhibited PGF2α-induced uterine contraction. These results provide evidence that PGF2α stimulates the MAP kinase signaling pathway in cultured rat puerperal uterine myometrial cells through Gβγ protein, suggesting that this new pathway may play an important role in the biological action of PGF2α on these cells.


Sign in / Sign up

Export Citation Format

Share Document