Expression of surfactant associated protein-A and Clara cell 10 kilodalton mRNA in neoplastic human lung tissue as detected by in situ hybridation

Lung Cancer ◽  
1993 ◽  
Vol 8 (5-6) ◽  
pp. 334
2015 ◽  
Vol 6 (12) ◽  
pp. 6971-6979 ◽  
Author(s):  
Ahsan R. Akram ◽  
Nicolaos Avlonitis ◽  
Annamaria Lilienkampf ◽  
Ana M. Perez-Lopez ◽  
Neil McDonald ◽  
...  

A fluorescently labelled ubiquicidin peptide enables bacterial detection in human lung tissuein vitro.


2020 ◽  
Author(s):  
Qing Liu ◽  
Xiaoli Tian ◽  
Daisuke Maruyama ◽  
Mehrdad Arjomandi ◽  
Arun Prakash

ABSTRACTMicrobial metabolites produced by the gut microbiome, such as short-chain fatty acids (SCFA), can influence both local intestinal and distant lung physiology and response to injury. However, how lung immune activity is regulated by SCFAs is unknown. We examined fresh human lung tissue and observed the presence of SCFAs with large inter-individual and even intra-lobe variability. In vitro, SCFAs were capable of modifying the metabolic programming in both resting and LPS-exposed alveolar macrophages (AM). Additionally, since we hypothesized that lung immune tone could be defined through priming of the inflammasome (aka signal 1), we interrogated naïve mouse lungs for pro-IL-1β message and localized its presence within the alveolar space in situ, specifically in AM subsets, and in close proximity to alveolar type 2 epithelial (AT2) cells. We established that metabolically active gut microbiota, that produce SCFAs, can transmit LPS and SCFAs to the lung (potential sources of signal 1), and thereby could regulate lung immune tone and metabolic programming. To understand how murine lung cells sensed and upregulated IL-1β in response to gut-microbiome factors, we determined that in vitro, AM and AT2 cells expressed SCFA receptors, FFAR2, FFAR3, and IL-1β but with different expression patterns and LPS-inducibility. Finally, we observed that IL-1β, FFAR2 and FFAR3 were expressed both in isolated human AM and AT2 cells ex-vivo, but in fresh human lung sections in situ, only AM expressed IL-1β at rest and after LPS challenge. Together, this translational study using mouse and human lung tissue and cells supports an important role for the gut microbiome and SCFAs in regulating lung immune tone.


1989 ◽  
Vol 77 (3) ◽  
pp. 297-304 ◽  
Author(s):  
F. J. Van Overveld ◽  
L. A. M. J. Houben ◽  
F. E. M. Schmitz du Moulin ◽  
P. L. B. Bruijnzeel ◽  
J. A. M. Raaijmakers ◽  
...  

1. In this study mast cells were found to comprise 2.1% of total cells recovered by enzymatic digestion of human lung tissue. 2. This mast cell population consisted of 79% formalin-sensitive, Alcian Blue-positive mast cells and 21% formalin-insensitive, Alcian Blue-positive mast cells. 3. By the use of centrifugal elutriation and subsequent Percoll gradient centrifugation, separate mixed cell populations could be obtained in which the mast cell constituents were either of the formalin-sensitive or -insensitive type. 4. Cell suspensions in which formalin-sensitive cells comprised 97% of mast cells contained approximately 1.34 pg of histamine per mast cell, whereas in preparations in which mast cells were 84% formalin-resistant the histamine content was approximately 4.17 pg of histamine per mast cell. 5. The histamine release upon anti-immunoglobulin E challenge of formalin-sensitive mast cells was greater than the release by formalin-insensitive mast cells. 6. After challenge with opsonized zymosan, only formalin-sensitive mast cells were able to release histamine. 7. Leukotriene C4 release was observed when formalin-sensitive mast cells were challenged with antiimmunoglobulin E. Formalin-insensitive mast cells showed no release of leukotriene C4. 8. Prostaglandin D2 release was observed when formalin-insensitive mast cells were challenged with antiimmunoglobulin E. Formalin-sensitive mast cells showed no release of prostaglandin D2.


Allergy ◽  
1986 ◽  
Vol 41 (5) ◽  
pp. 319-326 ◽  
Author(s):  
H. Bergstrand ◽  
B. Lundquist ◽  
B.-Å. Petersson

2013 ◽  
Vol 82 (1) ◽  
pp. 275-285 ◽  
Author(s):  
Jens Jäger ◽  
Sebastian Marwitz ◽  
Jana Tiefenau ◽  
Janine Rasch ◽  
Olga Shevchuk ◽  
...  

ABSTRACTHistological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model forLegionella pneumophilainfection comprising living human lung tissue. We stimulated lung explants withL. pneumophilastrains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion ofL. pneumophilato the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA−strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context ofL. pneumophilainfections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations.


2021 ◽  
Author(s):  
Steven B. Wells ◽  
Peter A. Szabo ◽  
Basak Ural ◽  
Maya M.L. Poon

This protocol describes a method for the isolation of the immune cells, structural and epithelial cells, and progenitors from human lung sections of about two grams. By providing defined media formulations, volumes at each step, and a defined dilution factor for density centrifugation, it yields consistent single-cell suspensions across samples.


Sign in / Sign up

Export Citation Format

Share Document