Separation of carbon dioxide from offshore gas turbine exhaust

1995 ◽  
Vol 36 (6-9) ◽  
pp. 393-396 ◽  
Author(s):  
Olav Falk-Pedersen ◽  
Yngvil Bjerve ◽  
Geir Glittum ◽  
Svein Rønning
Author(s):  
Anthony J. B. Jackson ◽  
Alcides Codeceira Neto ◽  
Matthew W. Whellens ◽  
Harry Audus

The world’s main atmospheric “greenhouse gas” is carbon dioxide (CO2). The CO2 content of the atmosphere continues to rise due to increasing world demand for energy, and thus further means are needed to achieve its abatement. Most gas turbine powered electricity generating plants use hydro-carbon fuels and this inevitably produces CO2 in the engine exhaust. This paper discusses a scheme for concentrating the gas turbine exhaust CO2, thus facilitating its extraction. The scheme is a gas turbine operating synchronously in closed cycle, with CO2 as the working fluid. The additional CO2 and water produced in the combustion process are removed continuously. CO2 and air have substantially different gas properties. This significantly affects the performance of the gas turbine. It is shown that any gas turbine designed to use air, and operating synchronously, would need considerable modifications to its compressor and combustion systems to use carbon dioxide as its working fluid.


1974 ◽  
Vol 96 (3) ◽  
pp. 181-184 ◽  
Author(s):  
J. R. Cummins

To investigate the sources of acoustic radiation from a gas turbine exhaust, a one-seventh scale model has been constructed. The model geometrically scales the flow path downstream of the rotating parts including support struts and turning vanes. A discussion and comparison of different kinds of aerodynamic and acoustic scaling techniques are given. The effect of the temperature ratio between model and prototype is found to be an important parameter in comparing acoustical data.


Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


1968 ◽  
Vol 90 (3) ◽  
pp. 265-270 ◽  
Author(s):  
C. G. Ringwall ◽  
L. R. Kelley

Circuit concepts and test data for a fluidic system to sense the average temperature in a gas turbine exhaust duct are presented. Phase discrimination techniques are used to sense the average wave velocity in a long tube and to produce an output pressure differential proportional to temperature error.


1974 ◽  
Author(s):  
Marv Weiss

A unique method for silencing heavy-duty gas turbines is described. The Switchback exhaust silencer which utilizes no conventional parallel baffles has at operating conditions measured attenuation values from 20 dB at 63 Hz to 45 dB at higher frequencies. Acoustic testing and analyses at both ambient and operating conditions are discussed.


Sign in / Sign up

Export Citation Format

Share Document